from torch import nn import torch from modules.commons.layers import LayerNorm class ConvolutionModule(nn.Module): """ConvolutionModule in Conformer model. Args: channels (int): The number of channels of conv layers. kernel_size (int): Kernerl size of conv layers. """ def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True): """Construct an ConvolutionModule object.""" super(ConvolutionModule, self).__init__() # kernerl_size should be a odd number for 'SAME' padding assert (kernel_size - 1) % 2 == 0 self.pointwise_conv1 = nn.Conv1d( channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=bias, ) self.depthwise_conv = nn.Conv1d( channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=bias, ) self.norm = nn.BatchNorm1d(channels) self.pointwise_conv2 = nn.Conv1d( channels, channels, kernel_size=1, stride=1, padding=0, bias=bias, ) self.activation = activation def forward(self, x): """Compute convolution module. Args: x (torch.Tensor): Input tensor (#batch, time, channels). Returns: torch.Tensor: Output tensor (#batch, time, channels). """ # exchange the temporal dimension and the feature dimension x = x.transpose(1, 2) # GLU mechanism x = self.pointwise_conv1(x) # (batch, 2*channel, dim) x = nn.functional.glu(x, dim=1) # (batch, channel, dim) # 1D Depthwise Conv x = self.depthwise_conv(x) x = self.activation(self.norm(x)) x = self.pointwise_conv2(x) return x.transpose(1, 2) class MultiLayeredConv1d(torch.nn.Module): """Multi-layered conv1d for Transformer block. This is a module of multi-leyered conv1d designed to replace positionwise feed-forward network in Transforner block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf """ def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate): """Initialize MultiLayeredConv1d module. Args: in_chans (int): Number of input channels. hidden_chans (int): Number of hidden channels. kernel_size (int): Kernel size of conv1d. dropout_rate (float): Dropout rate. """ super(MultiLayeredConv1d, self).__init__() self.w_1 = torch.nn.Conv1d( in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) self.w_2 = torch.nn.Conv1d( hidden_chans, in_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) self.dropout = torch.nn.Dropout(dropout_rate) def forward(self, x): """Calculate forward propagation. Args: x (torch.Tensor): Batch of input tensors (B, T, in_chans). Returns: torch.Tensor: Batch of output tensors (B, T, hidden_chans). """ x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1) class Swish(torch.nn.Module): """Construct an Swish object.""" def forward(self, x): """Return Swich activation function.""" return x * torch.sigmoid(x) class EncoderLayer(nn.Module): """Encoder layer module. Args: size (int): Input dimension. self_attn (torch.nn.Module): Self-attention module instance. `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance can be used as the argument. feed_forward (torch.nn.Module): Feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. conv_module (torch.nn.Module): Convolution module instance. `ConvlutionModule` instance can be used as the argument. dropout_rate (float): Dropout rate. normalize_before (bool): Whether to use layer_norm before the first block. concat_after (bool): Whether to concat attention layer's input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) """ def __init__( self, size, self_attn, feed_forward, feed_forward_macaron, conv_module, dropout_rate, normalize_before=True, concat_after=False, ): """Construct an EncoderLayer object.""" super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.feed_forward_macaron = feed_forward_macaron self.conv_module = conv_module self.norm_ff = LayerNorm(size) # for the FNN module self.norm_mha = LayerNorm(size) # for the MHA module if feed_forward_macaron is not None: self.norm_ff_macaron = LayerNorm(size) self.ff_scale = 0.5 else: self.ff_scale = 1.0 if self.conv_module is not None: self.norm_conv = LayerNorm(size) # for the CNN module self.norm_final = LayerNorm(size) # for the final output of the block self.dropout = nn.Dropout(dropout_rate) self.size = size self.normalize_before = normalize_before self.concat_after = concat_after if self.concat_after: self.concat_linear = nn.Linear(size + size, size) def forward(self, x_input, mask, cache=None): """Compute encoded features. Args: x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb. - w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)]. - w/o pos emb: Tensor (#batch, time, size). mask (torch.Tensor): Mask tensor for the input (#batch, time). cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time). """ if isinstance(x_input, tuple): x, pos_emb = x_input[0], x_input[1] else: x, pos_emb = x_input, None # whether to use macaron style if self.feed_forward_macaron is not None: residual = x if self.normalize_before: x = self.norm_ff_macaron(x) x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x)) if not self.normalize_before: x = self.norm_ff_macaron(x) # multi-headed self-attention module residual = x if self.normalize_before: x = self.norm_mha(x) if cache is None: x_q = x else: assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size) x_q = x[:, -1:, :] residual = residual[:, -1:, :] mask = None if mask is None else mask[:, -1:, :] if pos_emb is not None: x_att = self.self_attn(x_q, x, x, pos_emb, mask) else: x_att = self.self_attn(x_q, x, x, mask) if self.concat_after: x_concat = torch.cat((x, x_att), dim=-1) x = residual + self.concat_linear(x_concat) else: x = residual + self.dropout(x_att) if not self.normalize_before: x = self.norm_mha(x) # convolution module if self.conv_module is not None: residual = x if self.normalize_before: x = self.norm_conv(x) x = residual + self.dropout(self.conv_module(x)) if not self.normalize_before: x = self.norm_conv(x) # feed forward module residual = x if self.normalize_before: x = self.norm_ff(x) x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm_ff(x) if self.conv_module is not None: x = self.norm_final(x) if cache is not None: x = torch.cat([cache, x], dim=1) if pos_emb is not None: return (x, pos_emb), mask return x, mask