import numpy as np import torch import torch.distributed as dist from torch.utils.data import DistributedSampler from utils.commons.dataset_utils import BaseDataset, collate_1d, collate_2d from utils.commons.hparams import hparams from utils.commons.indexed_datasets import IndexedDataset class EndlessDistributedSampler(DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.shuffle = shuffle g = torch.Generator() g.manual_seed(self.epoch) if self.shuffle: indices = [i for _ in range(1000) for i in torch.randperm( len(self.dataset), generator=g).tolist()] else: indices = [i for _ in range(1000) for i in list(range(len(self.dataset)))] indices = indices[:len(indices) // self.num_replicas * self.num_replicas] indices = indices[self.rank::self.num_replicas] self.indices = indices def __iter__(self): return iter(self.indices) def __len__(self): return len(self.indices) class VocoderDataset(BaseDataset): def __init__(self, prefix, shuffle=False): super().__init__(shuffle) self.hparams = hparams self.prefix = prefix self.data_dir = hparams['binary_data_dir'] self.is_infer = prefix == 'test' self.batch_max_frames = 0 if self.is_infer else hparams['max_samples'] // hparams['hop_size'] self.hop_size = hparams['hop_size'] self.indexed_ds = None self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy') self.avail_idxs = [idx for idx, s in enumerate(self.sizes) if s > self.batch_max_frames] print(f"| {len(self.sizes) - len(self.avail_idxs)} short items are skipped in {prefix} set.") self.sizes = [s for idx, s in enumerate(self.sizes) if s > self.batch_max_frames] def _get_item(self, index): if self.indexed_ds is None: self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') item = self.indexed_ds[index] return item def __getitem__(self, index): index = self.avail_idxs[index] item = self._get_item(index) sample = { "id": index, "item_name": item['item_name'], "mel": torch.FloatTensor(item['mel']), "wav": torch.FloatTensor(item['wav'].astype(np.float32)), "pitch": torch.LongTensor(item['pitch']), "f0": torch.FloatTensor(item['f0']) } return sample def collater(self, batch): if len(batch) == 0: return {} y_batch, c_batch, p_batch, f0_batch = [], [], [], [] item_name = [] for idx in range(len(batch)): item_name.append(batch[idx]['item_name']) x, c = batch[idx]['wav'], batch[idx]['mel'] p, f0 = batch[idx]['pitch'], batch[idx]['f0'] self._assert_ready_for_upsampling(x, c, self.hop_size) if len(c) > self.batch_max_frames: # randomly pickup with the batch_max_steps length of the part batch_max_frames = self.batch_max_frames if self.batch_max_frames != 0 else len(c) - 1 batch_max_steps = batch_max_frames * self.hop_size interval_start = 0 interval_end = len(c) - batch_max_frames start_frame = np.random.randint(interval_start, interval_end) start_step = start_frame * self.hop_size y = x[start_step: start_step + batch_max_steps] c = c[start_frame: start_frame + batch_max_frames] p = p[start_frame: start_frame + batch_max_frames] f0 = f0[start_frame: start_frame + batch_max_frames] self._assert_ready_for_upsampling(y, c, self.hop_size) else: print(f"Removed short sample from batch (length={len(x)}).") continue y_batch += [y.reshape(-1, 1)] # [(T, 1), (T, 1), ...] c_batch += [c] # [(T' C), (T' C), ...] p_batch += [p] # [(T' C), (T' C), ...] f0_batch += [f0] # [(T' C), (T' C), ...] # convert each batch to tensor, asuume that each item in batch has the same length y_batch = collate_2d(y_batch, 0).transpose(2, 1) # (B, 1, T) c_batch = collate_2d(c_batch, 0).transpose(2, 1) # (B, C, T') p_batch = collate_1d(p_batch, 0) # (B, T') f0_batch = collate_1d(f0_batch, 0) # (B, T') # make input noise signal batch tensor z_batch = torch.randn(y_batch.size()) # (B, 1, T) return { 'z': z_batch, 'mels': c_batch, 'wavs': y_batch, 'pitches': p_batch, 'f0': f0_batch, 'item_name': item_name } @staticmethod def _assert_ready_for_upsampling(x, c, hop_size): """Assert the audio and feature lengths are correctly adjusted for upsamping.""" assert len(x) == (len(c)) * hop_size