# This file contains Transformer network # Most of the code is copied from http://nlp.seas.harvard.edu/2018/04/03/attention.html # The cfg name correspondance: # N=num_layers # d_model=input_encoding_size # d_ff=rnn_size # h is always 8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from . import utils import copy import math import numpy as np from .CaptionModel import CaptionModel from .AttModel import sort_pack_padded_sequence, pad_unsort_packed_sequence, pack_wrapper, AttModel class EncoderDecoder(nn.Module): """ A standard Encoder-Decoder architecture. Base for this and many other models. """ def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator = generator def forward(self, src, tgt, src_mask, tgt_mask): "Take in and process masked src and target sequences." return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask) def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, memory, src_mask, tgt, tgt_mask): return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask) class Generator(nn.Module): "Define standard linear + softmax generation step." def __init__(self, d_model, vocab): super(Generator, self).__init__() self.proj = nn.Linear(d_model, vocab) def forward(self, x): return F.log_softmax(self.proj(x), dim=-1) def clones(module, N): "Produce N identical layers." return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class Encoder(nn.Module): "Core encoder is a stack of N layers" def __init__(self, layer, N): super(Encoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, mask): "Pass the input (and mask) through each layer in turn." for layer in self.layers: x = layer(x, mask) return self.norm(x) class LayerNorm(nn.Module): "Construct a layernorm module (See citation for details)." def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x))) class EncoderLayer(nn.Module): "Encoder is made up of self-attn and feed forward (defined below)" def __init__(self, size, self_attn, feed_forward, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 2) self.size = size def forward(self, x, mask): "Follow Figure 1 (left) for connections." x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) class Decoder(nn.Module): "Generic N layer decoder with masking." def __init__(self, layer, N): super(Decoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, memory, src_mask, tgt_mask): for layer in self.layers: x = layer(x, memory, src_mask, tgt_mask) return self.norm(x) class DecoderLayer(nn.Module): "Decoder is made of self-attn, src-attn, and feed forward (defined below)" def __init__(self, size, self_attn, src_attn, feed_forward, dropout): super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 3) def forward(self, x, memory, src_mask, tgt_mask): "Follow Figure 1 (right) for connections." m = memory x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) return self.sublayer[2](x, self.feed_forward) def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0 def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, float('-inf')) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): "Implements Figure 2" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class Embeddings(nn.Module): def __init__(self, d_model, vocab): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, x): return self.lut(x) * math.sqrt(self.d_model) class PositionalEncoding(nn.Module): "Implement the PE function." def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1).float() div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.size(1)] return self.dropout(x) class TransformerModel(AttModel): def make_model(self, src_vocab, tgt_vocab, N_enc=6, N_dec=6, d_model=512, d_ff=2048, h=8, dropout=0.1): "Helper: Construct a model from hyperparameters." c = copy.deepcopy attn = MultiHeadedAttention(h, d_model, dropout) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N_enc), Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N_dec), lambda x:x, # nn.Sequential(Embeddings(d_model, src_vocab), c(position)), nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), Generator(d_model, tgt_vocab)) # This was important from their code. # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model def __init__(self, opt): super(TransformerModel, self).__init__(opt) self.opt = opt # self.config = yaml.load(open(opt.config_file)) self.N_enc = getattr(opt, 'N_enc', opt.num_layers) self.N_dec = getattr(opt, 'N_dec', opt.num_layers) self.d_model = getattr(opt, 'd_model', opt.input_encoding_size) self.d_ff = getattr(opt, 'd_ff', opt.rnn_size) self.h = getattr(opt, 'num_att_heads', 8) self.dropout = getattr(opt, 'dropout', 0.1) delattr(self, 'att_embed') self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.d_model), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.d_model),) if self.use_bn==2 else ()))) delattr(self, 'embed') self.embed = lambda x : x delattr(self, 'fc_embed') self.fc_embed = lambda x : x delattr(self, 'logit') del self.ctx2att tgt_vocab = self.vocab_size + 1 self.model = self.make_model(0, tgt_vocab, N_enc=self.N_enc, N_dec=self.N_dec, d_model=self.d_model, d_ff=self.d_ff, h=self.h, dropout=self.dropout) def logit(self, x): # unsafe way return self.model.generator.proj(x) def init_hidden(self, bsz): return [] def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks) memory = self.model.encode(att_feats, att_masks) return fc_feats[...,:0], att_feats[...,:0], memory, att_masks def _prepare_feature_forward(self, att_feats, att_masks=None, seq=None): att_feats, att_masks = self.clip_att(att_feats, att_masks) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) if att_masks is None: att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long) att_masks = att_masks.unsqueeze(-2) if seq is not None: # crop the last one # seq = seq[:,:-1] seq_mask = (seq.data != self.eos_idx) & (seq.data != self.pad_idx) seq_mask[:,0] = 1 # bos seq_mask = seq_mask.unsqueeze(-2) seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask) seq_per_img = seq.shape[0] // att_feats.shape[0] if seq_per_img > 1: att_feats, att_masks = utils.repeat_tensors(seq_per_img, [att_feats, att_masks] ) else: seq_mask = None return att_feats, seq, att_masks, seq_mask def _forward(self, fc_feats, att_feats, seq, att_masks=None): if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks, seq) out = self.model(att_feats, seq, att_masks, seq_mask) outputs = self.model.generator(out) return outputs # return torch.cat([_.unsqueeze(1) for _ in outputs], 1) def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask): """ state = [ys.unsqueeze(0)] """ if len(state) == 0: ys = it.unsqueeze(1) else: ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1) out = self.model.decode(memory, mask, ys, subsequent_mask(ys.size(1)) .to(memory.device)) return out[:, -1], [ys.unsqueeze(0)]