# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model # AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning # https://arxiv.org/abs/1612.01887 # AdaAttMO is a modified version with maxout lstm # Att2in is from Self-critical Sequence Training for Image Captioning # https://arxiv.org/abs/1612.00563 # In this file we only have Att2in2, which is a slightly different version of att2in, # in which the img feature embedding and word embedding is the same as what in adaatt. # UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA # https://arxiv.org/abs/1707.07998 # However, it may not be identical to the author's architecture. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import utils from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence from .CaptionModel import CaptionModel bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am'] bad_endings += ['the'] def sort_pack_padded_sequence(input, lengths): sorted_lengths, indices = torch.sort(lengths, descending=True) # tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True) tmp = pack_padded_sequence(input[indices], sorted_lengths.cpu(), batch_first=True) inv_ix = indices.clone() inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) return tmp, inv_ix def pad_unsort_packed_sequence(input, inv_ix): tmp, _ = pad_packed_sequence(input, batch_first=True) tmp = tmp[inv_ix] return tmp def pack_wrapper(module, att_feats, att_masks): if att_masks is not None: packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1)) return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) else: return module(att_feats) class AttModel(CaptionModel): def __init__(self, opt): super(AttModel, self).__init__() self.vocab_size = opt.vocab_size self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.bos_idx = getattr(opt, 'bos_idx', 0) self.eos_idx = getattr(opt, 'eos_idx', 0) self.pad_idx = getattr(opt, 'pad_idx', 0) self.use_bn = getattr(opt, 'use_bn', 0) self.ss_prob = 0.0 # Schedule sampling probability self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.att_embed = nn.Sequential(*( ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ (nn.Linear(self.att_feat_size, self.rnn_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm))+ ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ()))) self.logit_layers = getattr(opt, 'logit_layers', 1) if self.logit_layers == 1: self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1) else: self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)] self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)])) self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size) # For remove bad endding self.vocab = opt.vocab self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings] def init_hidden(self, bsz): weight = self.logit.weight \ if hasattr(self.logit, "weight") \ else self.logit[0].weight return (weight.new_zeros(self.num_layers, bsz, self.rnn_size), weight.new_zeros(self.num_layers, bsz, self.rnn_size)) def clip_att(self, att_feats, att_masks): # Clip the length of att_masks and att_feats to the maximum length if att_masks is not None: max_len = att_masks.data.long().sum(1).max() att_feats = att_feats[:, :max_len].contiguous() att_masks = att_masks[:, :max_len].contiguous() return att_feats, att_masks def _prepare_feature(self, fc_feats, att_feats, att_masks): att_feats, att_masks = self.clip_att(att_feats, att_masks) # embed fc and att feats fc_feats = self.fc_embed(fc_feats) att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) # Project the attention feats first to reduce memory and computation comsumptions. p_att_feats = self.ctx2att(att_feats) return fc_feats, att_feats, p_att_feats, att_masks def _forward(self, fc_feats, att_feats, seq, att_masks=None): batch_size = fc_feats.size(0) if seq.ndim == 3: # B * seq_per_img * seq_len seq = seq.reshape(-1, seq.shape[2]) seq_per_img = seq.shape[0] // batch_size state = self.init_hidden(batch_size*seq_per_img) outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1) # Prepare the features p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) # pp_att_feats is used for attention, we cache it in advance to reduce computation cost if seq_per_img > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) for i in range(seq.size(1)): if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1) sample_mask = sample_prob < self.ss_prob if sample_mask.sum() == 0: it = seq[:, i].clone() else: sample_ind = sample_mask.nonzero().view(-1) it = seq[:, i].data.clone() prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1) it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind)) else: it = seq[:, i].clone() # break if all the sequences end if i >= 1 and seq[:, i].sum() == 0: break output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) outputs[:, i] = output return outputs def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, output_logsoftmax=1): # 'it' contains a word index xt = self.embed(it) output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks) if output_logsoftmax: logprobs = F.log_softmax(self.logit(output), dim=1) else: logprobs = self.logit(output) return logprobs, state def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] for k in range(batch_size): state = self.init_hidden(beam_size) tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None] ) for t in range(1): if t == 0: # input it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state) self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt) if sample_n == beam_size: for _n in range(sample_n): seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps'] else: seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}): beam_size = opt.get('beam_size', 10) group_size = opt.get('group_size', 1) sample_n = opt.get('sample_n', 10) # when sample_n == beam_size then each beam is a sample. assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search' batch_size = fc_feats.size(0) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed' seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) # lets process every image independently for now, for simplicity self.done_beams = [[] for _ in range(batch_size)] state = self.init_hidden(batch_size) # first step, feed bos it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(beam_size, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, opt=opt) for k in range(batch_size): if sample_n == beam_size: for _n in range(sample_n): seq_len = self.done_beams[k][_n]['seq'].shape[0] seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq'] seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps'] else: seq_len = self.done_beams[k][0]['seq'].shape[0] seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps'] # return the samples and their log likelihoods return seq, seqLogprobs def _sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) sample_n = int(opt.get('sample_n', 1)) group_size = opt.get('group_size', 1) output_logsoftmax = opt.get('output_logsoftmax', 1) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) if beam_size > 1 and sample_method in ['greedy', 'beam_search']: return self._sample_beam(fc_feats, att_feats, att_masks, opt) if group_size > 1: return self._diverse_sample(fc_feats, att_feats, att_masks, opt) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size*sample_n) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) if sample_n > 1: p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n, [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks] ) trigrams = [] # will be a list of batch_size dictionaries seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long) seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1) for t in range(self.seq_length + 1): if t == 0: # input it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long) logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, output_logsoftmax=output_logsoftmax) if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Make it impossible to generate bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams # Copy from https://github.com/lukemelas/image-paragraph-captioning if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) # sample the next word if t == self.seq_length: # skip if we achieve maximum length break it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0 logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs) unfinished = unfinished & (it != self.eos_idx) seq[:,t] = it seqLogprobs[:,t] = logprobs # quit loop if all sequences have finished if unfinished.sum() == 0: break return seq, seqLogprobs def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}): sample_method = opt.get('sample_method', 'greedy') beam_size = opt.get('beam_size', 1) temperature = opt.get('temperature', 1.0) group_size = opt.get('group_size', 1) diversity_lambda = opt.get('diversity_lambda', 0.5) decoding_constraint = opt.get('decoding_constraint', 0) block_trigrams = opt.get('block_trigrams', 0) remove_bad_endings = opt.get('remove_bad_endings', 0) batch_size = fc_feats.size(0) state = self.init_hidden(batch_size) p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks) trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)] seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)] state_table = [self.init_hidden(batch_size) for _ in range(group_size)] for tt in range(self.seq_length + group_size): for divm in range(group_size): t = tt - divm seq = seq_table[divm] seqLogprobs = seqLogprobs_table[divm] trigrams = trigrams_table[divm] if t >= 0 and t <= self.seq_length-1: if t == 0: # input it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long) else: it = seq[:, t-1] # changed logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed logprobs = F.log_softmax(logprobs / temperature, dim=-1) # Add diversity if divm > 0: unaug_logprobs = logprobs.clone() for prev_choice in range(divm): prev_decisions = seq_table[prev_choice][:, t] logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda if decoding_constraint and t > 0: tmp = logprobs.new_zeros(logprobs.size()) tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf')) logprobs = logprobs + tmp if remove_bad_endings and t > 0: tmp = logprobs.new_zeros(logprobs.size()) prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix) # Impossible to generate remove_bad_endings tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf') logprobs = logprobs + tmp # Mess with trigrams if block_trigrams and t >= 3: # Store trigram generated at last step prev_two_batch = seq[:,t-3:t-1] for i in range(batch_size): # = seq.size(0) prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) current = seq[i][t-1] if t == 3: # initialize trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int} elif t > 3: if prev_two in trigrams[i]: # add to list trigrams[i][prev_two].append(current) else: # create list trigrams[i][prev_two] = [current] # Block used trigrams at next step prev_two_batch = seq[:,t-2:t] mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size for i in range(batch_size): prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item()) if prev_two in trigrams[i]: for j in trigrams[i][prev_two]: mask[i,j] += 1 # Apply mask to log probs #logprobs = logprobs - (mask * 1e9) alpha = 2.0 # = 4 logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best) it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1) # stop when all finished if t == 0: unfinished = it != self.eos_idx else: unfinished = (seq[:,t-1] != self.pad_idx) & (seq[:,t-1] != self.eos_idx) it[~unfinished] = self.pad_idx unfinished = unfinished & (it != self.eos_idx) # changed seq[:,t] = it seqLogprobs[:,t] = sampleLogprobs.view(-1) return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1) class AdaAtt_lstm(nn.Module): def __init__(self, opt, use_maxout=True): super(AdaAtt_lstm, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size self.use_maxout = use_maxout # Build a LSTM self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size) self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)]) self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)]) # Layers for getting the fake region if self.num_layers == 1: self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size) self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size) else: self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size) self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, xt, img_fc, state): hs = [] cs = [] for L in range(self.num_layers): # c,h from previous timesteps prev_h = state[0][L] prev_c = state[1][L] # the input to this layer if L == 0: x = xt i2h = self.w2h(x) + self.v2h(img_fc) else: x = hs[-1] x = F.dropout(x, self.drop_prob_lm, self.training) i2h = self.i2h[L-1](x) all_input_sums = i2h+self.h2h[L](prev_h) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) # decode the gates in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) # decode the write inputs if not self.use_maxout: in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size)) else: in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) # perform the LSTM update next_c = forget_gate * prev_c + in_gate * in_transform # gated cells form the output tanh_nex_c = torch.tanh(next_c) next_h = out_gate * tanh_nex_c if L == self.num_layers-1: if L == 0: i2h = self.r_w2h(x) + self.r_v2h(img_fc) else: i2h = self.r_i2h(x) n5 = i2h+self.r_h2h(prev_h) fake_region = torch.sigmoid(n5) * tanh_nex_c cs.append(next_c) hs.append(next_h) # set up the decoder top_h = hs[-1] top_h = F.dropout(top_h, self.drop_prob_lm, self.training) fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training) state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), torch.cat([_.unsqueeze(0) for _ in cs], 0)) return top_h, fake_region, state class AdaAtt_attention(nn.Module): def __init__(self, opt): super(AdaAtt_attention, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size self.drop_prob_lm = opt.drop_prob_lm self.att_hid_size = opt.att_hid_size # fake region embed self.fr_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.ReLU(), nn.Dropout(self.drop_prob_lm)) self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) # h out embed self.ho_linear = nn.Sequential( nn.Linear(self.rnn_size, self.input_encoding_size), nn.Tanh(), nn.Dropout(self.drop_prob_lm)) self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) self.att2h = nn.Linear(self.rnn_size, self.rnn_size) def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None): # View into three dimensions att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size conv_feat = conv_feat.view(-1, att_size, self.rnn_size) conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size) # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num fake_region = self.fr_linear(fake_region) fake_region_embed = self.fr_embed(fake_region) h_out_linear = self.ho_linear(h_out) h_out_embed = self.ho_embed(h_out_linear) txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1)) img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1) img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1) hA = torch.tanh(img_all_embed + txt_replicate) hA = F.dropout(hA,self.drop_prob_lm, self.training) hAflat = self.alpha_net(hA.view(-1, self.att_hid_size)) PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1) if att_masks is not None: att_masks = att_masks.view(-1, att_size) PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step. PI = PI / PI.sum(1, keepdim=True) visAtt = torch.bmm(PI.unsqueeze(1), img_all) visAttdim = visAtt.squeeze(1) atten_out = visAttdim + h_out_linear h = torch.tanh(self.att2h(atten_out)) h = F.dropout(h, self.drop_prob_lm, self.training) return h class AdaAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(AdaAttCore, self).__init__() self.lstm = AdaAtt_lstm(opt, use_maxout) self.attention = AdaAtt_attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): h_out, p_out, state = self.lstm(xt, fc_feats, state) atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks) return atten_out, state class UpDownCore(nn.Module): def __init__(self, opt, use_maxout=False): super(UpDownCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1 self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): prev_h = state[0][-1] att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1) h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0])) att = self.attention(h_att, att_feats, p_att_feats, att_masks) lang_lstm_input = torch.cat([att, h_att], 1) # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ????? h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1])) output = F.dropout(h_lang, self.drop_prob_lm, self.training) state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang])) return output, state ############################################################################ # Notice: # StackAtt and DenseAtt are models that I randomly designed. # They are not related to any paper. ############################################################################ from .FCModel import LSTMCore class StackAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(StackAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]]) return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class DenseAttCore(nn.Module): def __init__(self, opt, use_maxout=False): super(DenseAttCore, self).__init__() self.drop_prob_lm = opt.drop_prob_lm # self.att0 = Attention(opt) self.att1 = Attention(opt) self.att2 = Attention(opt) opt_input_encoding_size = opt.input_encoding_size opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size self.lstm0 = LSTMCore(opt) # att_feat + word_embedding opt.input_encoding_size = opt.rnn_size * 2 self.lstm1 = LSTMCore(opt) self.lstm2 = LSTMCore(opt) opt.input_encoding_size = opt_input_encoding_size # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size) self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size) # fuse h_0 and h_1 self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) # fuse h_0, h_1 and h_2 self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size), nn.ReLU(), nn.Dropout(opt.drop_prob_lm)) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks) h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]]) att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks) h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]]) att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks) h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]]) return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)] class Attention(nn.Module): def __init__(self, opt): super(Attention, self).__init__() self.rnn_size = opt.rnn_size self.att_hid_size = opt.att_hid_size self.h2att = nn.Linear(self.rnn_size, self.att_hid_size) self.alpha_net = nn.Linear(self.att_hid_size, 1) def forward(self, h, att_feats, p_att_feats, att_masks=None): # The p_att_feats here is already projected att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1) att = p_att_feats.view(-1, att_size, self.att_hid_size) att_h = self.h2att(h) # batch * att_hid_size att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size dot = att + att_h # batch * att_size * att_hid_size dot = torch.tanh(dot) # batch * att_size * att_hid_size dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size dot = self.alpha_net(dot) # (batch * att_size) * 1 dot = dot.view(-1, att_size) # batch * att_size weight = F.softmax(dot, dim=1) # batch * att_size if att_masks is not None: weight = weight * att_masks.view(-1, att_size).to(weight) weight = weight / weight.sum(1, keepdim=True) # normalize to 1 att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size return att_res class Att2in2Core(nn.Module): def __init__(self, opt): super(Att2in2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \ self.a2c(att_res) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class Att2inCore(Att2in2Core): def __init__(self, opt): super(Att2inCore, self).__init__(opt) del self.a2c self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size) """ Note this is my attempt to replicate att2all model in self-critical paper. However, this is not a correct replication actually. Will fix it. """ class Att2all2Core(nn.Module): def __init__(self, opt): super(Att2all2Core, self).__init__() self.input_encoding_size = opt.input_encoding_size #self.rnn_type = opt.rnn_type self.rnn_size = opt.rnn_size #self.num_layers = opt.num_layers self.drop_prob_lm = opt.drop_prob_lm self.fc_feat_size = opt.fc_feat_size self.att_feat_size = opt.att_feat_size self.att_hid_size = opt.att_hid_size # Build a LSTM self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size) self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size) self.dropout = nn.Dropout(self.drop_prob_lm) self.attention = Attention(opt) def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None): att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks) all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res) sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size) sigmoid_chunk = torch.sigmoid(sigmoid_chunk) in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size) forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size) out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size) in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) in_transform = torch.max(\ in_transform.narrow(1, 0, self.rnn_size), in_transform.narrow(1, self.rnn_size, self.rnn_size)) next_c = forget_gate * state[1][-1] + in_gate * in_transform next_h = out_gate * torch.tanh(next_c) output = self.dropout(next_h) state = (next_h.unsqueeze(0), next_c.unsqueeze(0)) return output, state class AdaAttModel(AttModel): def __init__(self, opt): super(AdaAttModel, self).__init__(opt) self.core = AdaAttCore(opt) # AdaAtt with maxout lstm class AdaAttMOModel(AttModel): def __init__(self, opt): super(AdaAttMOModel, self).__init__(opt) self.core = AdaAttCore(opt, True) class Att2in2Model(AttModel): def __init__(self, opt): super(Att2in2Model, self).__init__(opt) self.core = Att2in2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class Att2all2Model(AttModel): def __init__(self, opt): super(Att2all2Model, self).__init__(opt) self.core = Att2all2Core(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x : x class UpDownModel(AttModel): def __init__(self, opt): super(UpDownModel, self).__init__(opt) self.num_layers = 2 self.core = UpDownCore(opt) class StackAttModel(AttModel): def __init__(self, opt): super(StackAttModel, self).__init__(opt) self.num_layers = 3 self.core = StackAttCore(opt) class DenseAttModel(AttModel): def __init__(self, opt): super(DenseAttModel, self).__init__(opt) self.num_layers = 3 self.core = DenseAttCore(opt) class Att2inModel(AttModel): def __init__(self, opt): super(Att2inModel, self).__init__(opt) del self.embed, self.fc_embed, self.att_embed self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self.fc_embed = self.att_embed = lambda x: x del self.ctx2att self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size) self.core = Att2inCore(opt) self.init_weights() def init_weights(self): initrange = 0.1 self.embed.weight.data.uniform_(-initrange, initrange) self.logit.bias.data.fill_(0) self.logit.weight.data.uniform_(-initrange, initrange) class NewFCModel(AttModel): def __init__(self, opt): super(NewFCModel, self).__init__(opt) self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): # Step 0, feed the input image # if (self.training and state[0].is_leaf) or \ # (not self.training and state[0].sum() == 0): # _, state = self._core(fc_feats, state) # three cases # normal mle training # Sample # beam search (diverse beam search) # fixed captioning module. is_first_step = (state[0]==0).all(2).all(0) # size: B if is_first_step.all(): _, state = self._core(fc_feats, state) elif is_first_step.any(): # This is mostly for diverse beam search I think new_state = [torch.zeros_like(_) for _ in state] new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step] new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step] _, state = self._core(fc_feats, state) new_state[0][:, is_first_step] = state[0][:, is_first_step] new_state[1][:, is_first_step] = state[1][:, is_first_step] state = new_state # if (state[0]==0).all(): # # Let's forget about diverse beam search first # _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, att_feats, att_feats, att_masks class LMModel(AttModel): def __init__(self, opt): super(LMModel, self).__init__(opt) delattr(self, 'fc_embed') self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size) self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size) self._core = LSTMCore(opt) delattr(self, 'att_embed') self.att_embed = lambda x : x delattr(self, 'ctx2att') self.ctx2att = lambda x: x def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks): if (state[0]==0).all(): # Let's forget about diverse beam search first _, state = self._core(fc_feats, state) return self._core(xt, state) def _prepare_feature(self, fc_feats, att_feats, att_masks): fc_feats = self.fc_embed(fc_feats) return fc_feats, None, None, None