Spaces:
Sleeping
Sleeping
Upload 107 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- LICENSE.md +674 -0
- README.md +310 -12
- __pycache__/test.cpython-311.pyc +0 -0
- __pycache__/torch.cpython-310.pyc +0 -0
- __pycache__/torch.cpython-311.pyc +0 -0
- app.py +190 -0
- cfg/baseline/r50-csp.yaml +49 -0
- cfg/baseline/x50-csp.yaml +49 -0
- cfg/baseline/yolor-csp-x.yaml +52 -0
- cfg/baseline/yolor-csp.yaml +52 -0
- cfg/baseline/yolor-d6.yaml +63 -0
- cfg/baseline/yolor-e6.yaml +63 -0
- cfg/baseline/yolor-p6.yaml +63 -0
- cfg/baseline/yolor-w6.yaml +63 -0
- cfg/baseline/yolov3-spp.yaml +51 -0
- cfg/baseline/yolov3.yaml +51 -0
- cfg/baseline/yolov4-csp.yaml +52 -0
- cfg/deploy/yolov7-d6.yaml +202 -0
- cfg/deploy/yolov7-e6.yaml +180 -0
- cfg/deploy/yolov7-e6e.yaml +301 -0
- cfg/deploy/yolov7-tiny-silu.yaml +112 -0
- cfg/deploy/yolov7-tiny.yaml +112 -0
- cfg/deploy/yolov7-w6.yaml +158 -0
- cfg/deploy/yolov7.yaml +140 -0
- cfg/deploy/yolov7x.yaml +156 -0
- cfg/training/yolov7-d6.yaml +207 -0
- cfg/training/yolov7-e6.yaml +185 -0
- cfg/training/yolov7-e6e.yaml +306 -0
- cfg/training/yolov7-tiny.yaml +112 -0
- cfg/training/yolov7-w6.yaml +163 -0
- cfg/training/yolov7.yaml +140 -0
- cfg/training/yolov7x.yaml +156 -0
- data/coco.yaml +23 -0
- data/hyp.scratch.custom.yaml +31 -0
- data/hyp.scratch.p5.yaml +31 -0
- data/hyp.scratch.p6.yaml +31 -0
- data/hyp.scratch.tiny.yaml +31 -0
- deploy/triton-inference-server/README.md +164 -0
- deploy/triton-inference-server/boundingbox.py +33 -0
- deploy/triton-inference-server/client.py +334 -0
- deploy/triton-inference-server/labels.py +83 -0
- deploy/triton-inference-server/processing.py +51 -0
- deploy/triton-inference-server/render.py +110 -0
- environment.yml +469 -0
- export.py +205 -0
- hubconf.py +97 -0
- interfacetest2.py +223 -0
- models/__init__.py +1 -0
- models/__pycache__/__init__.cpython-311.pyc +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
deploy/triton-inference-server/data/dog_result.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
deploy/triton-inference-server/data/dog.jpg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
models/__pycache__/common.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
tools/YOLOv7-Dynamic-Batch-TENSORRT.ipynb filter=lfs diff=lfs merge=lfs -text
|
LICENSE.md
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
GNU GENERAL PUBLIC LICENSE
|
| 2 |
+
Version 3, 29 June 2007
|
| 3 |
+
|
| 4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
| 5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
| 6 |
+
of this license document, but changing it is not allowed.
|
| 7 |
+
|
| 8 |
+
Preamble
|
| 9 |
+
|
| 10 |
+
The GNU General Public License is a free, copyleft license for
|
| 11 |
+
software and other kinds of works.
|
| 12 |
+
|
| 13 |
+
The licenses for most software and other practical works are designed
|
| 14 |
+
to take away your freedom to share and change the works. By contrast,
|
| 15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
| 16 |
+
share and change all versions of a program--to make sure it remains free
|
| 17 |
+
software for all its users. We, the Free Software Foundation, use the
|
| 18 |
+
GNU General Public License for most of our software; it applies also to
|
| 19 |
+
any other work released this way by its authors. You can apply it to
|
| 20 |
+
your programs, too.
|
| 21 |
+
|
| 22 |
+
When we speak of free software, we are referring to freedom, not
|
| 23 |
+
price. Our General Public Licenses are designed to make sure that you
|
| 24 |
+
have the freedom to distribute copies of free software (and charge for
|
| 25 |
+
them if you wish), that you receive source code or can get it if you
|
| 26 |
+
want it, that you can change the software or use pieces of it in new
|
| 27 |
+
free programs, and that you know you can do these things.
|
| 28 |
+
|
| 29 |
+
To protect your rights, we need to prevent others from denying you
|
| 30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
| 31 |
+
certain responsibilities if you distribute copies of the software, or if
|
| 32 |
+
you modify it: responsibilities to respect the freedom of others.
|
| 33 |
+
|
| 34 |
+
For example, if you distribute copies of such a program, whether
|
| 35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
| 36 |
+
freedoms that you received. You must make sure that they, too, receive
|
| 37 |
+
or can get the source code. And you must show them these terms so they
|
| 38 |
+
know their rights.
|
| 39 |
+
|
| 40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
| 41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
| 42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
| 43 |
+
|
| 44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
| 45 |
+
that there is no warranty for this free software. For both users' and
|
| 46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
| 47 |
+
changed, so that their problems will not be attributed erroneously to
|
| 48 |
+
authors of previous versions.
|
| 49 |
+
|
| 50 |
+
Some devices are designed to deny users access to install or run
|
| 51 |
+
modified versions of the software inside them, although the manufacturer
|
| 52 |
+
can do so. This is fundamentally incompatible with the aim of
|
| 53 |
+
protecting users' freedom to change the software. The systematic
|
| 54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
| 55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
| 56 |
+
have designed this version of the GPL to prohibit the practice for those
|
| 57 |
+
products. If such problems arise substantially in other domains, we
|
| 58 |
+
stand ready to extend this provision to those domains in future versions
|
| 59 |
+
of the GPL, as needed to protect the freedom of users.
|
| 60 |
+
|
| 61 |
+
Finally, every program is threatened constantly by software patents.
|
| 62 |
+
States should not allow patents to restrict development and use of
|
| 63 |
+
software on general-purpose computers, but in those that do, we wish to
|
| 64 |
+
avoid the special danger that patents applied to a free program could
|
| 65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
| 66 |
+
patents cannot be used to render the program non-free.
|
| 67 |
+
|
| 68 |
+
The precise terms and conditions for copying, distribution and
|
| 69 |
+
modification follow.
|
| 70 |
+
|
| 71 |
+
TERMS AND CONDITIONS
|
| 72 |
+
|
| 73 |
+
0. Definitions.
|
| 74 |
+
|
| 75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
| 76 |
+
|
| 77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
| 78 |
+
works, such as semiconductor masks.
|
| 79 |
+
|
| 80 |
+
"The Program" refers to any copyrightable work licensed under this
|
| 81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
| 82 |
+
"recipients" may be individuals or organizations.
|
| 83 |
+
|
| 84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
| 85 |
+
in a fashion requiring copyright permission, other than the making of an
|
| 86 |
+
exact copy. The resulting work is called a "modified version" of the
|
| 87 |
+
earlier work or a work "based on" the earlier work.
|
| 88 |
+
|
| 89 |
+
A "covered work" means either the unmodified Program or a work based
|
| 90 |
+
on the Program.
|
| 91 |
+
|
| 92 |
+
To "propagate" a work means to do anything with it that, without
|
| 93 |
+
permission, would make you directly or secondarily liable for
|
| 94 |
+
infringement under applicable copyright law, except executing it on a
|
| 95 |
+
computer or modifying a private copy. Propagation includes copying,
|
| 96 |
+
distribution (with or without modification), making available to the
|
| 97 |
+
public, and in some countries other activities as well.
|
| 98 |
+
|
| 99 |
+
To "convey" a work means any kind of propagation that enables other
|
| 100 |
+
parties to make or receive copies. Mere interaction with a user through
|
| 101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
| 102 |
+
|
| 103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
| 104 |
+
to the extent that it includes a convenient and prominently visible
|
| 105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
| 106 |
+
tells the user that there is no warranty for the work (except to the
|
| 107 |
+
extent that warranties are provided), that licensees may convey the
|
| 108 |
+
work under this License, and how to view a copy of this License. If
|
| 109 |
+
the interface presents a list of user commands or options, such as a
|
| 110 |
+
menu, a prominent item in the list meets this criterion.
|
| 111 |
+
|
| 112 |
+
1. Source Code.
|
| 113 |
+
|
| 114 |
+
The "source code" for a work means the preferred form of the work
|
| 115 |
+
for making modifications to it. "Object code" means any non-source
|
| 116 |
+
form of a work.
|
| 117 |
+
|
| 118 |
+
A "Standard Interface" means an interface that either is an official
|
| 119 |
+
standard defined by a recognized standards body, or, in the case of
|
| 120 |
+
interfaces specified for a particular programming language, one that
|
| 121 |
+
is widely used among developers working in that language.
|
| 122 |
+
|
| 123 |
+
The "System Libraries" of an executable work include anything, other
|
| 124 |
+
than the work as a whole, that (a) is included in the normal form of
|
| 125 |
+
packaging a Major Component, but which is not part of that Major
|
| 126 |
+
Component, and (b) serves only to enable use of the work with that
|
| 127 |
+
Major Component, or to implement a Standard Interface for which an
|
| 128 |
+
implementation is available to the public in source code form. A
|
| 129 |
+
"Major Component", in this context, means a major essential component
|
| 130 |
+
(kernel, window system, and so on) of the specific operating system
|
| 131 |
+
(if any) on which the executable work runs, or a compiler used to
|
| 132 |
+
produce the work, or an object code interpreter used to run it.
|
| 133 |
+
|
| 134 |
+
The "Corresponding Source" for a work in object code form means all
|
| 135 |
+
the source code needed to generate, install, and (for an executable
|
| 136 |
+
work) run the object code and to modify the work, including scripts to
|
| 137 |
+
control those activities. However, it does not include the work's
|
| 138 |
+
System Libraries, or general-purpose tools or generally available free
|
| 139 |
+
programs which are used unmodified in performing those activities but
|
| 140 |
+
which are not part of the work. For example, Corresponding Source
|
| 141 |
+
includes interface definition files associated with source files for
|
| 142 |
+
the work, and the source code for shared libraries and dynamically
|
| 143 |
+
linked subprograms that the work is specifically designed to require,
|
| 144 |
+
such as by intimate data communication or control flow between those
|
| 145 |
+
subprograms and other parts of the work.
|
| 146 |
+
|
| 147 |
+
The Corresponding Source need not include anything that users
|
| 148 |
+
can regenerate automatically from other parts of the Corresponding
|
| 149 |
+
Source.
|
| 150 |
+
|
| 151 |
+
The Corresponding Source for a work in source code form is that
|
| 152 |
+
same work.
|
| 153 |
+
|
| 154 |
+
2. Basic Permissions.
|
| 155 |
+
|
| 156 |
+
All rights granted under this License are granted for the term of
|
| 157 |
+
copyright on the Program, and are irrevocable provided the stated
|
| 158 |
+
conditions are met. This License explicitly affirms your unlimited
|
| 159 |
+
permission to run the unmodified Program. The output from running a
|
| 160 |
+
covered work is covered by this License only if the output, given its
|
| 161 |
+
content, constitutes a covered work. This License acknowledges your
|
| 162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
| 163 |
+
|
| 164 |
+
You may make, run and propagate covered works that you do not
|
| 165 |
+
convey, without conditions so long as your license otherwise remains
|
| 166 |
+
in force. You may convey covered works to others for the sole purpose
|
| 167 |
+
of having them make modifications exclusively for you, or provide you
|
| 168 |
+
with facilities for running those works, provided that you comply with
|
| 169 |
+
the terms of this License in conveying all material for which you do
|
| 170 |
+
not control copyright. Those thus making or running the covered works
|
| 171 |
+
for you must do so exclusively on your behalf, under your direction
|
| 172 |
+
and control, on terms that prohibit them from making any copies of
|
| 173 |
+
your copyrighted material outside their relationship with you.
|
| 174 |
+
|
| 175 |
+
Conveying under any other circumstances is permitted solely under
|
| 176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
| 177 |
+
makes it unnecessary.
|
| 178 |
+
|
| 179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
| 180 |
+
|
| 181 |
+
No covered work shall be deemed part of an effective technological
|
| 182 |
+
measure under any applicable law fulfilling obligations under article
|
| 183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
| 184 |
+
similar laws prohibiting or restricting circumvention of such
|
| 185 |
+
measures.
|
| 186 |
+
|
| 187 |
+
When you convey a covered work, you waive any legal power to forbid
|
| 188 |
+
circumvention of technological measures to the extent such circumvention
|
| 189 |
+
is effected by exercising rights under this License with respect to
|
| 190 |
+
the covered work, and you disclaim any intention to limit operation or
|
| 191 |
+
modification of the work as a means of enforcing, against the work's
|
| 192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
| 193 |
+
technological measures.
|
| 194 |
+
|
| 195 |
+
4. Conveying Verbatim Copies.
|
| 196 |
+
|
| 197 |
+
You may convey verbatim copies of the Program's source code as you
|
| 198 |
+
receive it, in any medium, provided that you conspicuously and
|
| 199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
| 200 |
+
keep intact all notices stating that this License and any
|
| 201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
| 202 |
+
keep intact all notices of the absence of any warranty; and give all
|
| 203 |
+
recipients a copy of this License along with the Program.
|
| 204 |
+
|
| 205 |
+
You may charge any price or no price for each copy that you convey,
|
| 206 |
+
and you may offer support or warranty protection for a fee.
|
| 207 |
+
|
| 208 |
+
5. Conveying Modified Source Versions.
|
| 209 |
+
|
| 210 |
+
You may convey a work based on the Program, or the modifications to
|
| 211 |
+
produce it from the Program, in the form of source code under the
|
| 212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
| 213 |
+
|
| 214 |
+
a) The work must carry prominent notices stating that you modified
|
| 215 |
+
it, and giving a relevant date.
|
| 216 |
+
|
| 217 |
+
b) The work must carry prominent notices stating that it is
|
| 218 |
+
released under this License and any conditions added under section
|
| 219 |
+
7. This requirement modifies the requirement in section 4 to
|
| 220 |
+
"keep intact all notices".
|
| 221 |
+
|
| 222 |
+
c) You must license the entire work, as a whole, under this
|
| 223 |
+
License to anyone who comes into possession of a copy. This
|
| 224 |
+
License will therefore apply, along with any applicable section 7
|
| 225 |
+
additional terms, to the whole of the work, and all its parts,
|
| 226 |
+
regardless of how they are packaged. This License gives no
|
| 227 |
+
permission to license the work in any other way, but it does not
|
| 228 |
+
invalidate such permission if you have separately received it.
|
| 229 |
+
|
| 230 |
+
d) If the work has interactive user interfaces, each must display
|
| 231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
| 232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
| 233 |
+
work need not make them do so.
|
| 234 |
+
|
| 235 |
+
A compilation of a covered work with other separate and independent
|
| 236 |
+
works, which are not by their nature extensions of the covered work,
|
| 237 |
+
and which are not combined with it such as to form a larger program,
|
| 238 |
+
in or on a volume of a storage or distribution medium, is called an
|
| 239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
| 240 |
+
used to limit the access or legal rights of the compilation's users
|
| 241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
| 242 |
+
in an aggregate does not cause this License to apply to the other
|
| 243 |
+
parts of the aggregate.
|
| 244 |
+
|
| 245 |
+
6. Conveying Non-Source Forms.
|
| 246 |
+
|
| 247 |
+
You may convey a covered work in object code form under the terms
|
| 248 |
+
of sections 4 and 5, provided that you also convey the
|
| 249 |
+
machine-readable Corresponding Source under the terms of this License,
|
| 250 |
+
in one of these ways:
|
| 251 |
+
|
| 252 |
+
a) Convey the object code in, or embodied in, a physical product
|
| 253 |
+
(including a physical distribution medium), accompanied by the
|
| 254 |
+
Corresponding Source fixed on a durable physical medium
|
| 255 |
+
customarily used for software interchange.
|
| 256 |
+
|
| 257 |
+
b) Convey the object code in, or embodied in, a physical product
|
| 258 |
+
(including a physical distribution medium), accompanied by a
|
| 259 |
+
written offer, valid for at least three years and valid for as
|
| 260 |
+
long as you offer spare parts or customer support for that product
|
| 261 |
+
model, to give anyone who possesses the object code either (1) a
|
| 262 |
+
copy of the Corresponding Source for all the software in the
|
| 263 |
+
product that is covered by this License, on a durable physical
|
| 264 |
+
medium customarily used for software interchange, for a price no
|
| 265 |
+
more than your reasonable cost of physically performing this
|
| 266 |
+
conveying of source, or (2) access to copy the
|
| 267 |
+
Corresponding Source from a network server at no charge.
|
| 268 |
+
|
| 269 |
+
c) Convey individual copies of the object code with a copy of the
|
| 270 |
+
written offer to provide the Corresponding Source. This
|
| 271 |
+
alternative is allowed only occasionally and noncommercially, and
|
| 272 |
+
only if you received the object code with such an offer, in accord
|
| 273 |
+
with subsection 6b.
|
| 274 |
+
|
| 275 |
+
d) Convey the object code by offering access from a designated
|
| 276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
| 277 |
+
Corresponding Source in the same way through the same place at no
|
| 278 |
+
further charge. You need not require recipients to copy the
|
| 279 |
+
Corresponding Source along with the object code. If the place to
|
| 280 |
+
copy the object code is a network server, the Corresponding Source
|
| 281 |
+
may be on a different server (operated by you or a third party)
|
| 282 |
+
that supports equivalent copying facilities, provided you maintain
|
| 283 |
+
clear directions next to the object code saying where to find the
|
| 284 |
+
Corresponding Source. Regardless of what server hosts the
|
| 285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
| 286 |
+
available for as long as needed to satisfy these requirements.
|
| 287 |
+
|
| 288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
| 289 |
+
you inform other peers where the object code and Corresponding
|
| 290 |
+
Source of the work are being offered to the general public at no
|
| 291 |
+
charge under subsection 6d.
|
| 292 |
+
|
| 293 |
+
A separable portion of the object code, whose source code is excluded
|
| 294 |
+
from the Corresponding Source as a System Library, need not be
|
| 295 |
+
included in conveying the object code work.
|
| 296 |
+
|
| 297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
| 298 |
+
tangible personal property which is normally used for personal, family,
|
| 299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
| 300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
| 301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
| 302 |
+
product received by a particular user, "normally used" refers to a
|
| 303 |
+
typical or common use of that class of product, regardless of the status
|
| 304 |
+
of the particular user or of the way in which the particular user
|
| 305 |
+
actually uses, or expects or is expected to use, the product. A product
|
| 306 |
+
is a consumer product regardless of whether the product has substantial
|
| 307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
| 308 |
+
the only significant mode of use of the product.
|
| 309 |
+
|
| 310 |
+
"Installation Information" for a User Product means any methods,
|
| 311 |
+
procedures, authorization keys, or other information required to install
|
| 312 |
+
and execute modified versions of a covered work in that User Product from
|
| 313 |
+
a modified version of its Corresponding Source. The information must
|
| 314 |
+
suffice to ensure that the continued functioning of the modified object
|
| 315 |
+
code is in no case prevented or interfered with solely because
|
| 316 |
+
modification has been made.
|
| 317 |
+
|
| 318 |
+
If you convey an object code work under this section in, or with, or
|
| 319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
| 320 |
+
part of a transaction in which the right of possession and use of the
|
| 321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
| 322 |
+
fixed term (regardless of how the transaction is characterized), the
|
| 323 |
+
Corresponding Source conveyed under this section must be accompanied
|
| 324 |
+
by the Installation Information. But this requirement does not apply
|
| 325 |
+
if neither you nor any third party retains the ability to install
|
| 326 |
+
modified object code on the User Product (for example, the work has
|
| 327 |
+
been installed in ROM).
|
| 328 |
+
|
| 329 |
+
The requirement to provide Installation Information does not include a
|
| 330 |
+
requirement to continue to provide support service, warranty, or updates
|
| 331 |
+
for a work that has been modified or installed by the recipient, or for
|
| 332 |
+
the User Product in which it has been modified or installed. Access to a
|
| 333 |
+
network may be denied when the modification itself materially and
|
| 334 |
+
adversely affects the operation of the network or violates the rules and
|
| 335 |
+
protocols for communication across the network.
|
| 336 |
+
|
| 337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
| 338 |
+
in accord with this section must be in a format that is publicly
|
| 339 |
+
documented (and with an implementation available to the public in
|
| 340 |
+
source code form), and must require no special password or key for
|
| 341 |
+
unpacking, reading or copying.
|
| 342 |
+
|
| 343 |
+
7. Additional Terms.
|
| 344 |
+
|
| 345 |
+
"Additional permissions" are terms that supplement the terms of this
|
| 346 |
+
License by making exceptions from one or more of its conditions.
|
| 347 |
+
Additional permissions that are applicable to the entire Program shall
|
| 348 |
+
be treated as though they were included in this License, to the extent
|
| 349 |
+
that they are valid under applicable law. If additional permissions
|
| 350 |
+
apply only to part of the Program, that part may be used separately
|
| 351 |
+
under those permissions, but the entire Program remains governed by
|
| 352 |
+
this License without regard to the additional permissions.
|
| 353 |
+
|
| 354 |
+
When you convey a copy of a covered work, you may at your option
|
| 355 |
+
remove any additional permissions from that copy, or from any part of
|
| 356 |
+
it. (Additional permissions may be written to require their own
|
| 357 |
+
removal in certain cases when you modify the work.) You may place
|
| 358 |
+
additional permissions on material, added by you to a covered work,
|
| 359 |
+
for which you have or can give appropriate copyright permission.
|
| 360 |
+
|
| 361 |
+
Notwithstanding any other provision of this License, for material you
|
| 362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
| 363 |
+
that material) supplement the terms of this License with terms:
|
| 364 |
+
|
| 365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
| 366 |
+
terms of sections 15 and 16 of this License; or
|
| 367 |
+
|
| 368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
| 369 |
+
author attributions in that material or in the Appropriate Legal
|
| 370 |
+
Notices displayed by works containing it; or
|
| 371 |
+
|
| 372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
| 373 |
+
requiring that modified versions of such material be marked in
|
| 374 |
+
reasonable ways as different from the original version; or
|
| 375 |
+
|
| 376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
| 377 |
+
authors of the material; or
|
| 378 |
+
|
| 379 |
+
e) Declining to grant rights under trademark law for use of some
|
| 380 |
+
trade names, trademarks, or service marks; or
|
| 381 |
+
|
| 382 |
+
f) Requiring indemnification of licensors and authors of that
|
| 383 |
+
material by anyone who conveys the material (or modified versions of
|
| 384 |
+
it) with contractual assumptions of liability to the recipient, for
|
| 385 |
+
any liability that these contractual assumptions directly impose on
|
| 386 |
+
those licensors and authors.
|
| 387 |
+
|
| 388 |
+
All other non-permissive additional terms are considered "further
|
| 389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
| 390 |
+
received it, or any part of it, contains a notice stating that it is
|
| 391 |
+
governed by this License along with a term that is a further
|
| 392 |
+
restriction, you may remove that term. If a license document contains
|
| 393 |
+
a further restriction but permits relicensing or conveying under this
|
| 394 |
+
License, you may add to a covered work material governed by the terms
|
| 395 |
+
of that license document, provided that the further restriction does
|
| 396 |
+
not survive such relicensing or conveying.
|
| 397 |
+
|
| 398 |
+
If you add terms to a covered work in accord with this section, you
|
| 399 |
+
must place, in the relevant source files, a statement of the
|
| 400 |
+
additional terms that apply to those files, or a notice indicating
|
| 401 |
+
where to find the applicable terms.
|
| 402 |
+
|
| 403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
| 404 |
+
form of a separately written license, or stated as exceptions;
|
| 405 |
+
the above requirements apply either way.
|
| 406 |
+
|
| 407 |
+
8. Termination.
|
| 408 |
+
|
| 409 |
+
You may not propagate or modify a covered work except as expressly
|
| 410 |
+
provided under this License. Any attempt otherwise to propagate or
|
| 411 |
+
modify it is void, and will automatically terminate your rights under
|
| 412 |
+
this License (including any patent licenses granted under the third
|
| 413 |
+
paragraph of section 11).
|
| 414 |
+
|
| 415 |
+
However, if you cease all violation of this License, then your
|
| 416 |
+
license from a particular copyright holder is reinstated (a)
|
| 417 |
+
provisionally, unless and until the copyright holder explicitly and
|
| 418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
| 419 |
+
holder fails to notify you of the violation by some reasonable means
|
| 420 |
+
prior to 60 days after the cessation.
|
| 421 |
+
|
| 422 |
+
Moreover, your license from a particular copyright holder is
|
| 423 |
+
reinstated permanently if the copyright holder notifies you of the
|
| 424 |
+
violation by some reasonable means, this is the first time you have
|
| 425 |
+
received notice of violation of this License (for any work) from that
|
| 426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
| 427 |
+
your receipt of the notice.
|
| 428 |
+
|
| 429 |
+
Termination of your rights under this section does not terminate the
|
| 430 |
+
licenses of parties who have received copies or rights from you under
|
| 431 |
+
this License. If your rights have been terminated and not permanently
|
| 432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
| 433 |
+
material under section 10.
|
| 434 |
+
|
| 435 |
+
9. Acceptance Not Required for Having Copies.
|
| 436 |
+
|
| 437 |
+
You are not required to accept this License in order to receive or
|
| 438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
| 439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
| 440 |
+
to receive a copy likewise does not require acceptance. However,
|
| 441 |
+
nothing other than this License grants you permission to propagate or
|
| 442 |
+
modify any covered work. These actions infringe copyright if you do
|
| 443 |
+
not accept this License. Therefore, by modifying or propagating a
|
| 444 |
+
covered work, you indicate your acceptance of this License to do so.
|
| 445 |
+
|
| 446 |
+
10. Automatic Licensing of Downstream Recipients.
|
| 447 |
+
|
| 448 |
+
Each time you convey a covered work, the recipient automatically
|
| 449 |
+
receives a license from the original licensors, to run, modify and
|
| 450 |
+
propagate that work, subject to this License. You are not responsible
|
| 451 |
+
for enforcing compliance by third parties with this License.
|
| 452 |
+
|
| 453 |
+
An "entity transaction" is a transaction transferring control of an
|
| 454 |
+
organization, or substantially all assets of one, or subdividing an
|
| 455 |
+
organization, or merging organizations. If propagation of a covered
|
| 456 |
+
work results from an entity transaction, each party to that
|
| 457 |
+
transaction who receives a copy of the work also receives whatever
|
| 458 |
+
licenses to the work the party's predecessor in interest had or could
|
| 459 |
+
give under the previous paragraph, plus a right to possession of the
|
| 460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
| 461 |
+
the predecessor has it or can get it with reasonable efforts.
|
| 462 |
+
|
| 463 |
+
You may not impose any further restrictions on the exercise of the
|
| 464 |
+
rights granted or affirmed under this License. For example, you may
|
| 465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
| 466 |
+
rights granted under this License, and you may not initiate litigation
|
| 467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
| 468 |
+
any patent claim is infringed by making, using, selling, offering for
|
| 469 |
+
sale, or importing the Program or any portion of it.
|
| 470 |
+
|
| 471 |
+
11. Patents.
|
| 472 |
+
|
| 473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
| 474 |
+
License of the Program or a work on which the Program is based. The
|
| 475 |
+
work thus licensed is called the contributor's "contributor version".
|
| 476 |
+
|
| 477 |
+
A contributor's "essential patent claims" are all patent claims
|
| 478 |
+
owned or controlled by the contributor, whether already acquired or
|
| 479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
| 480 |
+
by this License, of making, using, or selling its contributor version,
|
| 481 |
+
but do not include claims that would be infringed only as a
|
| 482 |
+
consequence of further modification of the contributor version. For
|
| 483 |
+
purposes of this definition, "control" includes the right to grant
|
| 484 |
+
patent sublicenses in a manner consistent with the requirements of
|
| 485 |
+
this License.
|
| 486 |
+
|
| 487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
| 488 |
+
patent license under the contributor's essential patent claims, to
|
| 489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
| 490 |
+
propagate the contents of its contributor version.
|
| 491 |
+
|
| 492 |
+
In the following three paragraphs, a "patent license" is any express
|
| 493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
| 494 |
+
(such as an express permission to practice a patent or covenant not to
|
| 495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
| 496 |
+
party means to make such an agreement or commitment not to enforce a
|
| 497 |
+
patent against the party.
|
| 498 |
+
|
| 499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
| 500 |
+
and the Corresponding Source of the work is not available for anyone
|
| 501 |
+
to copy, free of charge and under the terms of this License, through a
|
| 502 |
+
publicly available network server or other readily accessible means,
|
| 503 |
+
then you must either (1) cause the Corresponding Source to be so
|
| 504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
| 505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
| 506 |
+
consistent with the requirements of this License, to extend the patent
|
| 507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
| 508 |
+
actual knowledge that, but for the patent license, your conveying the
|
| 509 |
+
covered work in a country, or your recipient's use of the covered work
|
| 510 |
+
in a country, would infringe one or more identifiable patents in that
|
| 511 |
+
country that you have reason to believe are valid.
|
| 512 |
+
|
| 513 |
+
If, pursuant to or in connection with a single transaction or
|
| 514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
| 515 |
+
covered work, and grant a patent license to some of the parties
|
| 516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
| 517 |
+
or convey a specific copy of the covered work, then the patent license
|
| 518 |
+
you grant is automatically extended to all recipients of the covered
|
| 519 |
+
work and works based on it.
|
| 520 |
+
|
| 521 |
+
A patent license is "discriminatory" if it does not include within
|
| 522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
| 523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
| 524 |
+
specifically granted under this License. You may not convey a covered
|
| 525 |
+
work if you are a party to an arrangement with a third party that is
|
| 526 |
+
in the business of distributing software, under which you make payment
|
| 527 |
+
to the third party based on the extent of your activity of conveying
|
| 528 |
+
the work, and under which the third party grants, to any of the
|
| 529 |
+
parties who would receive the covered work from you, a discriminatory
|
| 530 |
+
patent license (a) in connection with copies of the covered work
|
| 531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
| 532 |
+
for and in connection with specific products or compilations that
|
| 533 |
+
contain the covered work, unless you entered into that arrangement,
|
| 534 |
+
or that patent license was granted, prior to 28 March 2007.
|
| 535 |
+
|
| 536 |
+
Nothing in this License shall be construed as excluding or limiting
|
| 537 |
+
any implied license or other defenses to infringement that may
|
| 538 |
+
otherwise be available to you under applicable patent law.
|
| 539 |
+
|
| 540 |
+
12. No Surrender of Others' Freedom.
|
| 541 |
+
|
| 542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
| 543 |
+
otherwise) that contradict the conditions of this License, they do not
|
| 544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
| 545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
| 546 |
+
License and any other pertinent obligations, then as a consequence you may
|
| 547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
| 548 |
+
to collect a royalty for further conveying from those to whom you convey
|
| 549 |
+
the Program, the only way you could satisfy both those terms and this
|
| 550 |
+
License would be to refrain entirely from conveying the Program.
|
| 551 |
+
|
| 552 |
+
13. Use with the GNU Affero General Public License.
|
| 553 |
+
|
| 554 |
+
Notwithstanding any other provision of this License, you have
|
| 555 |
+
permission to link or combine any covered work with a work licensed
|
| 556 |
+
under version 3 of the GNU Affero General Public License into a single
|
| 557 |
+
combined work, and to convey the resulting work. The terms of this
|
| 558 |
+
License will continue to apply to the part which is the covered work,
|
| 559 |
+
but the special requirements of the GNU Affero General Public License,
|
| 560 |
+
section 13, concerning interaction through a network will apply to the
|
| 561 |
+
combination as such.
|
| 562 |
+
|
| 563 |
+
14. Revised Versions of this License.
|
| 564 |
+
|
| 565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
| 566 |
+
the GNU General Public License from time to time. Such new versions will
|
| 567 |
+
be similar in spirit to the present version, but may differ in detail to
|
| 568 |
+
address new problems or concerns.
|
| 569 |
+
|
| 570 |
+
Each version is given a distinguishing version number. If the
|
| 571 |
+
Program specifies that a certain numbered version of the GNU General
|
| 572 |
+
Public License "or any later version" applies to it, you have the
|
| 573 |
+
option of following the terms and conditions either of that numbered
|
| 574 |
+
version or of any later version published by the Free Software
|
| 575 |
+
Foundation. If the Program does not specify a version number of the
|
| 576 |
+
GNU General Public License, you may choose any version ever published
|
| 577 |
+
by the Free Software Foundation.
|
| 578 |
+
|
| 579 |
+
If the Program specifies that a proxy can decide which future
|
| 580 |
+
versions of the GNU General Public License can be used, that proxy's
|
| 581 |
+
public statement of acceptance of a version permanently authorizes you
|
| 582 |
+
to choose that version for the Program.
|
| 583 |
+
|
| 584 |
+
Later license versions may give you additional or different
|
| 585 |
+
permissions. However, no additional obligations are imposed on any
|
| 586 |
+
author or copyright holder as a result of your choosing to follow a
|
| 587 |
+
later version.
|
| 588 |
+
|
| 589 |
+
15. Disclaimer of Warranty.
|
| 590 |
+
|
| 591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
| 592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
| 593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
| 594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
| 595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| 596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
| 597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
| 598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
| 599 |
+
|
| 600 |
+
16. Limitation of Liability.
|
| 601 |
+
|
| 602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
| 603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
| 604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
| 605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
| 606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
| 607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
| 608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
| 609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
| 610 |
+
SUCH DAMAGES.
|
| 611 |
+
|
| 612 |
+
17. Interpretation of Sections 15 and 16.
|
| 613 |
+
|
| 614 |
+
If the disclaimer of warranty and limitation of liability provided
|
| 615 |
+
above cannot be given local legal effect according to their terms,
|
| 616 |
+
reviewing courts shall apply local law that most closely approximates
|
| 617 |
+
an absolute waiver of all civil liability in connection with the
|
| 618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
| 619 |
+
copy of the Program in return for a fee.
|
| 620 |
+
|
| 621 |
+
END OF TERMS AND CONDITIONS
|
| 622 |
+
|
| 623 |
+
How to Apply These Terms to Your New Programs
|
| 624 |
+
|
| 625 |
+
If you develop a new program, and you want it to be of the greatest
|
| 626 |
+
possible use to the public, the best way to achieve this is to make it
|
| 627 |
+
free software which everyone can redistribute and change under these terms.
|
| 628 |
+
|
| 629 |
+
To do so, attach the following notices to the program. It is safest
|
| 630 |
+
to attach them to the start of each source file to most effectively
|
| 631 |
+
state the exclusion of warranty; and each file should have at least
|
| 632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
| 633 |
+
|
| 634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
| 635 |
+
Copyright (C) <year> <name of author>
|
| 636 |
+
|
| 637 |
+
This program is free software: you can redistribute it and/or modify
|
| 638 |
+
it under the terms of the GNU General Public License as published by
|
| 639 |
+
the Free Software Foundation, either version 3 of the License, or
|
| 640 |
+
(at your option) any later version.
|
| 641 |
+
|
| 642 |
+
This program is distributed in the hope that it will be useful,
|
| 643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 645 |
+
GNU General Public License for more details.
|
| 646 |
+
|
| 647 |
+
You should have received a copy of the GNU General Public License
|
| 648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
| 649 |
+
|
| 650 |
+
Also add information on how to contact you by electronic and paper mail.
|
| 651 |
+
|
| 652 |
+
If the program does terminal interaction, make it output a short
|
| 653 |
+
notice like this when it starts in an interactive mode:
|
| 654 |
+
|
| 655 |
+
<program> Copyright (C) <year> <name of author>
|
| 656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
| 657 |
+
This is free software, and you are welcome to redistribute it
|
| 658 |
+
under certain conditions; type `show c' for details.
|
| 659 |
+
|
| 660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
| 661 |
+
parts of the General Public License. Of course, your program's commands
|
| 662 |
+
might be different; for a GUI interface, you would use an "about box".
|
| 663 |
+
|
| 664 |
+
You should also get your employer (if you work as a programmer) or school,
|
| 665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
| 666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
| 667 |
+
<https://www.gnu.org/licenses/>.
|
| 668 |
+
|
| 669 |
+
The GNU General Public License does not permit incorporating your program
|
| 670 |
+
into proprietary programs. If your program is a subroutine library, you
|
| 671 |
+
may consider it more useful to permit linking proprietary applications with
|
| 672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
| 673 |
+
Public License instead of this License. But first, please read
|
| 674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
README.md
CHANGED
|
@@ -1,12 +1,310 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Official YOLOv7
|
| 2 |
+
|
| 3 |
+
Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
|
| 4 |
+
|
| 5 |
+
[](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=yolov7-trainable-bag-of-freebies-sets-new)
|
| 6 |
+
[](https://huggingface.co/spaces/akhaliq/yolov7)
|
| 7 |
+
<a href="https://colab.research.google.com/gist/AlexeyAB/b769f5795e65fdab80086f6cb7940dae/yolov7detection.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
| 8 |
+
[](https://arxiv.org/abs/2207.02696)
|
| 9 |
+
|
| 10 |
+
<div align="center">
|
| 11 |
+
<a href="./">
|
| 12 |
+
<img src="./figure/performance.png" width="79%"/>
|
| 13 |
+
</a>
|
| 14 |
+
</div>
|
| 15 |
+
|
| 16 |
+
## Web Demo
|
| 17 |
+
|
| 18 |
+
- Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces/akhaliq/yolov7) using Gradio. Try out the Web Demo [](https://huggingface.co/spaces/akhaliq/yolov7)
|
| 19 |
+
|
| 20 |
+
## Performance
|
| 21 |
+
|
| 22 |
+
MS COCO
|
| 23 |
+
|
| 24 |
+
| Model | Test Size | AP<sup>test</sup> | AP<sub>50</sub><sup>test</sup> | AP<sub>75</sub><sup>test</sup> | batch 1 fps | batch 32 average time |
|
| 25 |
+
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
|
| 26 |
+
| [**YOLOv7**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) | 640 | **51.4%** | **69.7%** | **55.9%** | 161 *fps* | 2.8 *ms* |
|
| 27 |
+
| [**YOLOv7-X**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) | 640 | **53.1%** | **71.2%** | **57.8%** | 114 *fps* | 4.3 *ms* |
|
| 28 |
+
| | | | | | | |
|
| 29 |
+
| [**YOLOv7-W6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) | 1280 | **54.9%** | **72.6%** | **60.1%** | 84 *fps* | 7.6 *ms* |
|
| 30 |
+
| [**YOLOv7-E6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) | 1280 | **56.0%** | **73.5%** | **61.2%** | 56 *fps* | 12.3 *ms* |
|
| 31 |
+
| [**YOLOv7-D6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) | 1280 | **56.6%** | **74.0%** | **61.8%** | 44 *fps* | 15.0 *ms* |
|
| 32 |
+
| [**YOLOv7-E6E**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) | 1280 | **56.8%** | **74.4%** | **62.1%** | 36 *fps* | 18.7 *ms* |
|
| 33 |
+
|
| 34 |
+
## Installation
|
| 35 |
+
|
| 36 |
+
Docker environment (recommended)
|
| 37 |
+
<details><summary> <b>Expand</b> </summary>
|
| 38 |
+
|
| 39 |
+
``` shell
|
| 40 |
+
# create the docker container, you can change the share memory size if you have more.
|
| 41 |
+
nvidia-docker run --name yolov7 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3
|
| 42 |
+
|
| 43 |
+
# apt install required packages
|
| 44 |
+
apt update
|
| 45 |
+
apt install -y zip htop screen libgl1-mesa-glx
|
| 46 |
+
|
| 47 |
+
# pip install required packages
|
| 48 |
+
pip install seaborn thop
|
| 49 |
+
|
| 50 |
+
# go to code folder
|
| 51 |
+
cd /yolov7
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
</details>
|
| 55 |
+
|
| 56 |
+
## Testing
|
| 57 |
+
|
| 58 |
+
[`yolov7.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) [`yolov7x.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) [`yolov7-w6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) [`yolov7-e6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) [`yolov7-d6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) [`yolov7-e6e.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt)
|
| 59 |
+
|
| 60 |
+
``` shell
|
| 61 |
+
python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
You will get the results:
|
| 65 |
+
|
| 66 |
+
```
|
| 67 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.51206
|
| 68 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.69730
|
| 69 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.55521
|
| 70 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35247
|
| 71 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55937
|
| 72 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66693
|
| 73 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.38453
|
| 74 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.63765
|
| 75 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.68772
|
| 76 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.53766
|
| 77 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.73549
|
| 78 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83868
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
To measure accuracy, download [COCO-annotations for Pycocotools](http://images.cocodataset.org/annotations/annotations_trainval2017.zip) to the `./coco/annotations/instances_val2017.json`
|
| 82 |
+
|
| 83 |
+
## Training
|
| 84 |
+
|
| 85 |
+
Data preparation
|
| 86 |
+
|
| 87 |
+
``` shell
|
| 88 |
+
bash scripts/get_coco.sh
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip)
|
| 92 |
+
|
| 93 |
+
Single GPU training
|
| 94 |
+
|
| 95 |
+
``` shell
|
| 96 |
+
# train p5 models
|
| 97 |
+
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
|
| 98 |
+
|
| 99 |
+
# train p6 models
|
| 100 |
+
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
Multiple GPU training
|
| 104 |
+
|
| 105 |
+
``` shell
|
| 106 |
+
# train p5 models
|
| 107 |
+
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
|
| 108 |
+
|
| 109 |
+
# train p6 models
|
| 110 |
+
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_aux.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch-size 128 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
## Transfer learning
|
| 114 |
+
|
| 115 |
+
[`yolov7_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7_training.pt) [`yolov7x_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x_training.pt) [`yolov7-w6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6_training.pt) [`yolov7-e6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6_training.pt) [`yolov7-d6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6_training.pt) [`yolov7-e6e_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e_training.pt)
|
| 116 |
+
|
| 117 |
+
Single GPU finetuning for custom dataset
|
| 118 |
+
|
| 119 |
+
``` shell
|
| 120 |
+
# finetune p5 models
|
| 121 |
+
python train.py --workers 8 --device 0 --batch-size 32 --data data/custom.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights 'yolov7_training.pt' --name yolov7-custom --hyp data/hyp.scratch.custom.yaml
|
| 122 |
+
|
| 123 |
+
# finetune p6 models
|
| 124 |
+
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/custom.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6-custom.yaml --weights 'yolov7-w6_training.pt' --name yolov7-w6-custom --hyp data/hyp.scratch.custom.yaml
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
## Re-parameterization
|
| 128 |
+
|
| 129 |
+
See [reparameterization.ipynb](tools/reparameterization.ipynb)
|
| 130 |
+
|
| 131 |
+
## Inference
|
| 132 |
+
|
| 133 |
+
On video:
|
| 134 |
+
``` shell
|
| 135 |
+
python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source yourvideo.mp4
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
On image:
|
| 139 |
+
``` shell
|
| 140 |
+
python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/horses.jpg
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
<div align="center">
|
| 144 |
+
<a href="./">
|
| 145 |
+
<img src="./figure/horses_prediction.jpg" width="59%"/>
|
| 146 |
+
</a>
|
| 147 |
+
</div>
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
## Export
|
| 151 |
+
|
| 152 |
+
**Pytorch to CoreML (and inference on MacOS/iOS)** <a href="https://colab.research.google.com/github/WongKinYiu/yolov7/blob/main/tools/YOLOv7CoreML.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
| 153 |
+
|
| 154 |
+
**Pytorch to ONNX with NMS (and inference)** <a href="https://colab.research.google.com/github/WongKinYiu/yolov7/blob/main/tools/YOLOv7onnx.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
| 155 |
+
```shell
|
| 156 |
+
python export.py --weights yolov7-tiny.pt --grid --end2end --simplify \
|
| 157 |
+
--topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
**Pytorch to TensorRT with NMS (and inference)** <a href="https://colab.research.google.com/github/WongKinYiu/yolov7/blob/main/tools/YOLOv7trt.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
| 161 |
+
|
| 162 |
+
```shell
|
| 163 |
+
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt
|
| 164 |
+
python export.py --weights ./yolov7-tiny.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640
|
| 165 |
+
git clone https://github.com/Linaom1214/tensorrt-python.git
|
| 166 |
+
python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
**Pytorch to TensorRT another way** <a href="https://colab.research.google.com/gist/AlexeyAB/fcb47ae544cf284eb24d8ad8e880d45c/yolov7trtlinaom.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <details><summary> <b>Expand</b> </summary>
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
```shell
|
| 173 |
+
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt
|
| 174 |
+
python export.py --weights yolov7-tiny.pt --grid --include-nms
|
| 175 |
+
git clone https://github.com/Linaom1214/tensorrt-python.git
|
| 176 |
+
python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16
|
| 177 |
+
|
| 178 |
+
# Or use trtexec to convert ONNX to TensorRT engine
|
| 179 |
+
/usr/src/tensorrt/bin/trtexec --onnx=yolov7-tiny.onnx --saveEngine=yolov7-tiny-nms.trt --fp16
|
| 180 |
+
```
|
| 181 |
+
|
| 182 |
+
</details>
|
| 183 |
+
|
| 184 |
+
Tested with: Python 3.7.13, Pytorch 1.12.0+cu113
|
| 185 |
+
|
| 186 |
+
## Pose estimation
|
| 187 |
+
|
| 188 |
+
[`code`](https://github.com/WongKinYiu/yolov7/tree/pose) [`yolov7-w6-pose.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6-pose.pt)
|
| 189 |
+
|
| 190 |
+
See [keypoint.ipynb](https://github.com/WongKinYiu/yolov7/blob/main/tools/keypoint.ipynb).
|
| 191 |
+
|
| 192 |
+
<div align="center">
|
| 193 |
+
<a href="./">
|
| 194 |
+
<img src="./figure/pose.png" width="39%"/>
|
| 195 |
+
</a>
|
| 196 |
+
</div>
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
## Instance segmentation (with NTU)
|
| 200 |
+
|
| 201 |
+
[`code`](https://github.com/WongKinYiu/yolov7/tree/mask) [`yolov7-mask.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-mask.pt)
|
| 202 |
+
|
| 203 |
+
See [instance.ipynb](https://github.com/WongKinYiu/yolov7/blob/main/tools/instance.ipynb).
|
| 204 |
+
|
| 205 |
+
<div align="center">
|
| 206 |
+
<a href="./">
|
| 207 |
+
<img src="./figure/mask.png" width="59%"/>
|
| 208 |
+
</a>
|
| 209 |
+
</div>
|
| 210 |
+
|
| 211 |
+
## Instance segmentation
|
| 212 |
+
|
| 213 |
+
[`code`](https://github.com/WongKinYiu/yolov7/tree/u7/seg) [`yolov7-seg.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-seg.pt)
|
| 214 |
+
|
| 215 |
+
YOLOv7 for instance segmentation (YOLOR + YOLOv5 + YOLACT)
|
| 216 |
+
|
| 217 |
+
| Model | Test Size | AP<sup>box</sup> | AP<sub>50</sub><sup>box</sup> | AP<sub>75</sub><sup>box</sup> | AP<sup>mask</sup> | AP<sub>50</sub><sup>mask</sup> | AP<sub>75</sub><sup>mask</sup> |
|
| 218 |
+
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
| 219 |
+
| **YOLOv7-seg** | 640 | **51.4%** | **69.4%** | **55.8%** | **41.5%** | **65.5%** | **43.7%** |
|
| 220 |
+
|
| 221 |
+
## Anchor free detection head
|
| 222 |
+
|
| 223 |
+
[`code`](https://github.com/WongKinYiu/yolov7/tree/u6) [`yolov7-u6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-u6.pt)
|
| 224 |
+
|
| 225 |
+
YOLOv7 with decoupled TAL head (YOLOR + YOLOv5 + YOLOv6)
|
| 226 |
+
|
| 227 |
+
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> |
|
| 228 |
+
| :-- | :-: | :-: | :-: | :-: |
|
| 229 |
+
| **YOLOv7-u6** | 640 | **52.6%** | **69.7%** | **57.3%** |
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
## Citation
|
| 233 |
+
|
| 234 |
+
```
|
| 235 |
+
@inproceedings{wang2023yolov7,
|
| 236 |
+
title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
|
| 237 |
+
author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
|
| 238 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
| 239 |
+
year={2023}
|
| 240 |
+
}
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
```
|
| 244 |
+
@article{wang2023designing,
|
| 245 |
+
title={Designing Network Design Strategies Through Gradient Path Analysis},
|
| 246 |
+
author={Wang, Chien-Yao and Liao, Hong-Yuan Mark and Yeh, I-Hau},
|
| 247 |
+
journal={Journal of Information Science and Engineering},
|
| 248 |
+
year={2023}
|
| 249 |
+
}
|
| 250 |
+
```
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
## Teaser
|
| 254 |
+
|
| 255 |
+
YOLOv7-semantic & YOLOv7-panoptic & YOLOv7-caption
|
| 256 |
+
|
| 257 |
+
<div align="center">
|
| 258 |
+
<a href="./">
|
| 259 |
+
<img src="./figure/tennis.jpg" width="24%"/>
|
| 260 |
+
</a>
|
| 261 |
+
<a href="./">
|
| 262 |
+
<img src="./figure/tennis_semantic.jpg" width="24%"/>
|
| 263 |
+
</a>
|
| 264 |
+
<a href="./">
|
| 265 |
+
<img src="./figure/tennis_panoptic.png" width="24%"/>
|
| 266 |
+
</a>
|
| 267 |
+
<a href="./">
|
| 268 |
+
<img src="./figure/tennis_caption.png" width="24%"/>
|
| 269 |
+
</a>
|
| 270 |
+
</div>
|
| 271 |
+
|
| 272 |
+
YOLOv7-semantic & YOLOv7-detection & YOLOv7-depth (with NTUT)
|
| 273 |
+
|
| 274 |
+
<div align="center">
|
| 275 |
+
<a href="./">
|
| 276 |
+
<img src="./figure/yolov7_city.jpg" width="80%"/>
|
| 277 |
+
</a>
|
| 278 |
+
</div>
|
| 279 |
+
|
| 280 |
+
YOLOv7-3d-detection & YOLOv7-lidar & YOLOv7-road (with NTUT)
|
| 281 |
+
|
| 282 |
+
<div align="center">
|
| 283 |
+
<a href="./">
|
| 284 |
+
<img src="./figure/yolov7_3d.jpg" width="30%"/>
|
| 285 |
+
</a>
|
| 286 |
+
<a href="./">
|
| 287 |
+
<img src="./figure/yolov7_lidar.jpg" width="30%"/>
|
| 288 |
+
</a>
|
| 289 |
+
<a href="./">
|
| 290 |
+
<img src="./figure/yolov7_road.jpg" width="30%"/>
|
| 291 |
+
</a>
|
| 292 |
+
</div>
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
## Acknowledgements
|
| 296 |
+
|
| 297 |
+
<details><summary> <b>Expand</b> </summary>
|
| 298 |
+
|
| 299 |
+
* [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet)
|
| 300 |
+
* [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor)
|
| 301 |
+
* [https://github.com/WongKinYiu/PyTorch_YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4)
|
| 302 |
+
* [https://github.com/WongKinYiu/ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)
|
| 303 |
+
* [https://github.com/Megvii-BaseDetection/YOLOX](https://github.com/Megvii-BaseDetection/YOLOX)
|
| 304 |
+
* [https://github.com/ultralytics/yolov3](https://github.com/ultralytics/yolov3)
|
| 305 |
+
* [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)
|
| 306 |
+
* [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG)
|
| 307 |
+
* [https://github.com/JUGGHM/OREPA_CVPR2022](https://github.com/JUGGHM/OREPA_CVPR2022)
|
| 308 |
+
* [https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose](https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose)
|
| 309 |
+
|
| 310 |
+
</details>
|
__pycache__/test.cpython-311.pyc
ADDED
|
Binary file (25.9 kB). View file
|
|
|
__pycache__/torch.cpython-310.pyc
ADDED
|
Binary file (170 Bytes). View file
|
|
|
__pycache__/torch.cpython-311.pyc
ADDED
|
Binary file (275 Bytes). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import time
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import os
|
| 5 |
+
import cv2
|
| 6 |
+
import torch
|
| 7 |
+
import torch.backends.cudnn as cudnn
|
| 8 |
+
from numpy import random
|
| 9 |
+
import sys
|
| 10 |
+
import numpy as np
|
| 11 |
+
from models.experimental import attempt_load
|
| 12 |
+
from utils.datasets import LoadImages
|
| 13 |
+
from utils.general import check_img_size, non_max_suppression, scale_coords, set_logging, increment_path
|
| 14 |
+
from utils.plots import plot_one_box
|
| 15 |
+
from utils.torch_utils import select_device, time_synchronized
|
| 16 |
+
import gradio as gr
|
| 17 |
+
import ffmpeg
|
| 18 |
+
|
| 19 |
+
# IoU and scanner movement functions (unchanged)
|
| 20 |
+
def compute_iou(box1, box2):
|
| 21 |
+
x1, y1, x2, y2 = box1
|
| 22 |
+
x1_, y1_, x2_, y2_ = box2
|
| 23 |
+
xi1 = max(x1, x1_)
|
| 24 |
+
yi1 = max(y1, y1_)
|
| 25 |
+
xi2 = min(x2, x2_)
|
| 26 |
+
yi2 = min(y2, y2_)
|
| 27 |
+
inter_width = max(0, xi2 - xi1)
|
| 28 |
+
inter_height = max(0, yi2 - yi1)
|
| 29 |
+
inter_area = inter_width * inter_height
|
| 30 |
+
box1_area = (x2 - x1) * (y2 - y1)
|
| 31 |
+
box2_area = (x2_ - x1_) * (y2_ - y1_)
|
| 32 |
+
union_area = box1_area + box2_area - inter_area
|
| 33 |
+
return inter_area / union_area if union_area != 0 else 0.0
|
| 34 |
+
|
| 35 |
+
def is_scanner_moving(prev_centroids, curr_box, scanner_id, threshold=5.0):
|
| 36 |
+
x1, y1, x2, y2 = curr_box
|
| 37 |
+
curr_centroid = ((x1 + x2) / 2, (y1 + y2) / 2)
|
| 38 |
+
if scanner_id in prev_centroids:
|
| 39 |
+
prev_x, prev_y = prev_centroids[scanner_id]
|
| 40 |
+
distance = np.sqrt((curr_centroid[0] - prev_x)**2 + (curr_centroid[1] - prev_y)**2)
|
| 41 |
+
return distance > threshold
|
| 42 |
+
return False
|
| 43 |
+
|
| 44 |
+
def detect_video(video_path, weights, conf_thres=0.25, iou_thres=0.45, img_size=640, device='', save_dir='runs/detect/exp'):
|
| 45 |
+
save_dir = Path(increment_path(Path(save_dir), exist_ok=True))
|
| 46 |
+
save_dir.mkdir(parents=True, exist_ok=True)
|
| 47 |
+
|
| 48 |
+
set_logging()
|
| 49 |
+
device = select_device(device)
|
| 50 |
+
half = device.type != 'cpu'
|
| 51 |
+
model = attempt_load(weights, map_location=device)
|
| 52 |
+
stride = int(model.stride.max())
|
| 53 |
+
imgsz = check_img_size(img_size, s=stride)
|
| 54 |
+
if half:
|
| 55 |
+
model.half()
|
| 56 |
+
|
| 57 |
+
dataset = LoadImages(video_path, img_size=imgsz, stride=stride)
|
| 58 |
+
names = model.module.names if hasattr(model, 'module') else model.names
|
| 59 |
+
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
| 60 |
+
|
| 61 |
+
vid_path, vid_writer = None, None
|
| 62 |
+
prev_centroids = {}
|
| 63 |
+
scanner_id_counter = 0
|
| 64 |
+
|
| 65 |
+
for path, img, im0s, vid_cap in dataset:
|
| 66 |
+
img = torch.from_numpy(img).to(device)
|
| 67 |
+
img = img.half() if half else img.float()
|
| 68 |
+
img /= 255.0
|
| 69 |
+
if img.ndimension() == 3:
|
| 70 |
+
img = img.unsqueeze(0)
|
| 71 |
+
|
| 72 |
+
with torch.no_grad():
|
| 73 |
+
pred = model(img)[0]
|
| 74 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres)
|
| 75 |
+
|
| 76 |
+
for i, det in enumerate(pred):
|
| 77 |
+
p = Path(path)
|
| 78 |
+
save_path = str(save_dir / p.name.replace('.mp4', '_output.mp4'))
|
| 79 |
+
im0 = im0s
|
| 80 |
+
|
| 81 |
+
if len(det):
|
| 82 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
| 83 |
+
item_boxes, scanner_data, phone_boxes = [], [], []
|
| 84 |
+
curr_scanner_boxes = []
|
| 85 |
+
|
| 86 |
+
for *xyxy, conf, cls in det:
|
| 87 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
| 88 |
+
class_name = names[int(cls)]
|
| 89 |
+
color = colors[int(cls)]
|
| 90 |
+
if class_name.lower() == "item":
|
| 91 |
+
item_boxes.append([x1, y1, x2, y2])
|
| 92 |
+
elif class_name.lower() == "phone":
|
| 93 |
+
phone_boxes.append([x1, y1, x2, y2])
|
| 94 |
+
elif class_name.lower() == "scanner":
|
| 95 |
+
curr_scanner_boxes.append([x1, y1, x2, y2])
|
| 96 |
+
plot_one_box(xyxy, im0, label=class_name, color=color, line_thickness=2)
|
| 97 |
+
|
| 98 |
+
new_prev_centroids = {}
|
| 99 |
+
if prev_centroids and curr_scanner_boxes:
|
| 100 |
+
for curr_box in curr_scanner_boxes:
|
| 101 |
+
curr_centroid = ((curr_box[0] + curr_box[2]) / 2, (curr_box[1] + curr_box[3]) / 2)
|
| 102 |
+
best_match_id = min(prev_centroids.keys(),
|
| 103 |
+
key=lambda k: np.sqrt((curr_centroid[0] - prev_centroids[k][0])**2 +
|
| 104 |
+
(curr_centroid[1] - prev_centroids[k][1])**2),
|
| 105 |
+
default=None)
|
| 106 |
+
if best_match_id is not None and np.sqrt((curr_centroid[0] - prev_centroids[best_match_id][0])**2 +
|
| 107 |
+
(curr_centroid[1] - prev_centroids[best_match_id][1])**2) < 50:
|
| 108 |
+
scanner_id = best_match_id
|
| 109 |
+
else:
|
| 110 |
+
scanner_id = scanner_id_counter
|
| 111 |
+
scanner_id_counter += 1
|
| 112 |
+
is_moving = is_scanner_moving(prev_centroids, curr_box, scanner_id)
|
| 113 |
+
movement_status = "Scanning" if is_moving else "Idle"
|
| 114 |
+
scanner_data.append([curr_box, movement_status, scanner_id])
|
| 115 |
+
new_prev_centroids[scanner_id] = curr_centroid
|
| 116 |
+
elif curr_scanner_boxes:
|
| 117 |
+
for curr_box in curr_scanner_boxes:
|
| 118 |
+
scanner_id = scanner_id_counter
|
| 119 |
+
scanner_id_counter += 1
|
| 120 |
+
movement_status = "Idle"
|
| 121 |
+
curr_centroid = ((curr_box[0] + curr_box[2]) / 2, (curr_box[1] + curr_box[3]) / 2)
|
| 122 |
+
scanner_data.append([curr_box, movement_status, scanner_id])
|
| 123 |
+
new_prev_centroids[scanner_id] = curr_centroid
|
| 124 |
+
|
| 125 |
+
prev_centroids = new_prev_centroids
|
| 126 |
+
|
| 127 |
+
for scanner_box, movement_status, scanner_id in scanner_data:
|
| 128 |
+
x1, y1, x2, y2 = scanner_box
|
| 129 |
+
label = f"scanner {movement_status} (ID: {scanner_id})"
|
| 130 |
+
plot_one_box([x1, y1, x2, y2], im0, label=label, color=colors[names.index("scanner")], line_thickness=2)
|
| 131 |
+
|
| 132 |
+
product_scanning_status = ""
|
| 133 |
+
payment_scanning_status = ""
|
| 134 |
+
for scanner_box, movement_status, _ in scanner_data:
|
| 135 |
+
for item_box in item_boxes:
|
| 136 |
+
if movement_status == "Scanning" and compute_iou(scanner_box, item_box) > 0.1:
|
| 137 |
+
product_scanning_status = "Product scanning is finished"
|
| 138 |
+
for phone_box in phone_boxes:
|
| 139 |
+
if movement_status == "Scanning" and compute_iou(scanner_box, phone_box) > 0.1:
|
| 140 |
+
payment_scanning_status = "Payment scanning is finished"
|
| 141 |
+
|
| 142 |
+
if product_scanning_status:
|
| 143 |
+
cv2.putText(im0, product_scanning_status, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, colors[names.index("scanner")], 2)
|
| 144 |
+
if payment_scanning_status:
|
| 145 |
+
cv2.putText(im0, payment_scanning_status, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.9, colors[names.index("scanner")], 2)
|
| 146 |
+
|
| 147 |
+
if vid_path != save_path:
|
| 148 |
+
vid_path = save_path
|
| 149 |
+
if isinstance(vid_writer, cv2.VideoWriter):
|
| 150 |
+
vid_writer.release()
|
| 151 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS) if vid_cap else 30
|
| 152 |
+
w, h = im0.shape[1], im0.shape[0]
|
| 153 |
+
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
| 154 |
+
vid_writer.write(im0)
|
| 155 |
+
|
| 156 |
+
if isinstance(vid_writer, cv2.VideoWriter):
|
| 157 |
+
vid_writer.release()
|
| 158 |
+
|
| 159 |
+
# Convert to H.264 for browser compatibility
|
| 160 |
+
output_h264 = str(Path(save_path).with_name(f"{Path(save_path).stem}_h264.mp4"))
|
| 161 |
+
try:
|
| 162 |
+
stream = ffmpeg.input(save_path)
|
| 163 |
+
stream = ffmpeg.output(stream, output_h264, vcodec='libx264', acodec='aac', format='mp4', pix_fmt='yuv420p')
|
| 164 |
+
ffmpeg.run(stream, overwrite_output=True)
|
| 165 |
+
os.remove(save_path) # Remove original
|
| 166 |
+
return output_h264
|
| 167 |
+
except ffmpeg.Error as e:
|
| 168 |
+
print(f"FFmpeg error: {e.stderr.decode()}")
|
| 169 |
+
return save_path
|
| 170 |
+
|
| 171 |
+
def gradio_interface(video, conf_thres, iou_thres):
|
| 172 |
+
weights = "/home/myominhtet/Desktop/deepsortfromscratch/yolov7/best.pt"
|
| 173 |
+
img_size = 640
|
| 174 |
+
output_video = detect_video(video, weights, conf_thres, iou_thres, img_size)
|
| 175 |
+
return output_video if output_video else "Error processing video."
|
| 176 |
+
|
| 177 |
+
interface = gr.Interface(
|
| 178 |
+
fn=gradio_interface,
|
| 179 |
+
inputs=[
|
| 180 |
+
gr.Video(label="Upload Video"),
|
| 181 |
+
gr.Slider(0, 1, value=0.25, step=0.05, label="Confidence Threshold"),
|
| 182 |
+
gr.Slider(0, 1, value=0.45, step=0.05, label="IoU Threshold"),
|
| 183 |
+
],
|
| 184 |
+
outputs=gr.Video(label="Processed Video"),
|
| 185 |
+
title="YOLO Video Detection",
|
| 186 |
+
description="Upload a video to run YOLO detection with custom parameters."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
if __name__ == "__main__":
|
| 190 |
+
interface.launch(share=True)
|
cfg/baseline/r50-csp.yaml
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
| 9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
| 10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
| 11 |
+
|
| 12 |
+
# CSP-ResNet backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Stem, [128]], # 0-P1/2
|
| 16 |
+
[-1, 3, ResCSPC, [128]],
|
| 17 |
+
[-1, 1, Conv, [256, 3, 2]], # 2-P3/8
|
| 18 |
+
[-1, 4, ResCSPC, [256]],
|
| 19 |
+
[-1, 1, Conv, [512, 3, 2]], # 4-P3/8
|
| 20 |
+
[-1, 6, ResCSPC, [512]],
|
| 21 |
+
[-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
|
| 22 |
+
[-1, 3, ResCSPC, [1024]], # 7
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
# CSP-Res-PAN head
|
| 26 |
+
head:
|
| 27 |
+
[[-1, 1, SPPCSPC, [512]], # 8
|
| 28 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 29 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 30 |
+
[5, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 31 |
+
[[-1, -2], 1, Concat, [1]],
|
| 32 |
+
[-1, 2, ResCSPB, [256]], # 13
|
| 33 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 35 |
+
[3, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 36 |
+
[[-1, -2], 1, Concat, [1]],
|
| 37 |
+
[-1, 2, ResCSPB, [128]], # 18
|
| 38 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 39 |
+
[-2, 1, Conv, [256, 3, 2]],
|
| 40 |
+
[[-1, 13], 1, Concat, [1]], # cat
|
| 41 |
+
[-1, 2, ResCSPB, [256]], # 22
|
| 42 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 43 |
+
[-2, 1, Conv, [512, 3, 2]],
|
| 44 |
+
[[-1, 8], 1, Concat, [1]], # cat
|
| 45 |
+
[-1, 2, ResCSPB, [512]], # 26
|
| 46 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
| 47 |
+
|
| 48 |
+
[[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 49 |
+
]
|
cfg/baseline/x50-csp.yaml
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
| 9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
| 10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
| 11 |
+
|
| 12 |
+
# CSP-ResNeXt backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Stem, [128]], # 0-P1/2
|
| 16 |
+
[-1, 3, ResXCSPC, [128]],
|
| 17 |
+
[-1, 1, Conv, [256, 3, 2]], # 2-P3/8
|
| 18 |
+
[-1, 4, ResXCSPC, [256]],
|
| 19 |
+
[-1, 1, Conv, [512, 3, 2]], # 4-P3/8
|
| 20 |
+
[-1, 6, ResXCSPC, [512]],
|
| 21 |
+
[-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
|
| 22 |
+
[-1, 3, ResXCSPC, [1024]], # 7
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
# CSP-ResX-PAN head
|
| 26 |
+
head:
|
| 27 |
+
[[-1, 1, SPPCSPC, [512]], # 8
|
| 28 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 29 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 30 |
+
[5, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 31 |
+
[[-1, -2], 1, Concat, [1]],
|
| 32 |
+
[-1, 2, ResXCSPB, [256]], # 13
|
| 33 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 35 |
+
[3, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 36 |
+
[[-1, -2], 1, Concat, [1]],
|
| 37 |
+
[-1, 2, ResXCSPB, [128]], # 18
|
| 38 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 39 |
+
[-2, 1, Conv, [256, 3, 2]],
|
| 40 |
+
[[-1, 13], 1, Concat, [1]], # cat
|
| 41 |
+
[-1, 2, ResXCSPB, [256]], # 22
|
| 42 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 43 |
+
[-2, 1, Conv, [512, 3, 2]],
|
| 44 |
+
[[-1, 8], 1, Concat, [1]], # cat
|
| 45 |
+
[-1, 2, ResXCSPB, [512]], # 26
|
| 46 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
| 47 |
+
|
| 48 |
+
[[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 49 |
+
]
|
cfg/baseline/yolor-csp-x.yaml
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.33 # model depth multiple
|
| 4 |
+
width_multiple: 1.25 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
| 9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
| 10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
| 11 |
+
|
| 12 |
+
# CSP-Darknet backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
| 16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
| 17 |
+
[-1, 1, Bottleneck, [64]],
|
| 18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
| 19 |
+
[-1, 2, BottleneckCSPC, [128]],
|
| 20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
| 21 |
+
[-1, 8, BottleneckCSPC, [256]],
|
| 22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
| 23 |
+
[-1, 8, BottleneckCSPC, [512]],
|
| 24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
| 25 |
+
[-1, 4, BottleneckCSPC, [1024]], # 10
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
# CSP-Dark-PAN head
|
| 29 |
+
head:
|
| 30 |
+
[[-1, 1, SPPCSPC, [512]], # 11
|
| 31 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 32 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 33 |
+
[8, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 34 |
+
[[-1, -2], 1, Concat, [1]],
|
| 35 |
+
[-1, 2, BottleneckCSPB, [256]], # 16
|
| 36 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 38 |
+
[6, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 39 |
+
[[-1, -2], 1, Concat, [1]],
|
| 40 |
+
[-1, 2, BottleneckCSPB, [128]], # 21
|
| 41 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 42 |
+
[-2, 1, Conv, [256, 3, 2]],
|
| 43 |
+
[[-1, 16], 1, Concat, [1]], # cat
|
| 44 |
+
[-1, 2, BottleneckCSPB, [256]], # 25
|
| 45 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 46 |
+
[-2, 1, Conv, [512, 3, 2]],
|
| 47 |
+
[[-1, 11], 1, Concat, [1]], # cat
|
| 48 |
+
[-1, 2, BottleneckCSPB, [512]], # 29
|
| 49 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
| 50 |
+
|
| 51 |
+
[[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 52 |
+
]
|
cfg/baseline/yolor-csp.yaml
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
| 9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
| 10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
| 11 |
+
|
| 12 |
+
# CSP-Darknet backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
| 16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
| 17 |
+
[-1, 1, Bottleneck, [64]],
|
| 18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
| 19 |
+
[-1, 2, BottleneckCSPC, [128]],
|
| 20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
| 21 |
+
[-1, 8, BottleneckCSPC, [256]],
|
| 22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
| 23 |
+
[-1, 8, BottleneckCSPC, [512]],
|
| 24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
| 25 |
+
[-1, 4, BottleneckCSPC, [1024]], # 10
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
# CSP-Dark-PAN head
|
| 29 |
+
head:
|
| 30 |
+
[[-1, 1, SPPCSPC, [512]], # 11
|
| 31 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 32 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 33 |
+
[8, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 34 |
+
[[-1, -2], 1, Concat, [1]],
|
| 35 |
+
[-1, 2, BottleneckCSPB, [256]], # 16
|
| 36 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 38 |
+
[6, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 39 |
+
[[-1, -2], 1, Concat, [1]],
|
| 40 |
+
[-1, 2, BottleneckCSPB, [128]], # 21
|
| 41 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 42 |
+
[-2, 1, Conv, [256, 3, 2]],
|
| 43 |
+
[[-1, 16], 1, Concat, [1]], # cat
|
| 44 |
+
[-1, 2, BottleneckCSPB, [256]], # 25
|
| 45 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 46 |
+
[-2, 1, Conv, [512, 3, 2]],
|
| 47 |
+
[[-1, 11], 1, Concat, [1]], # cat
|
| 48 |
+
[-1, 2, BottleneckCSPB, [512]], # 29
|
| 49 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
| 50 |
+
|
| 51 |
+
[[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 52 |
+
]
|
cfg/baseline/yolor-d6.yaml
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # expand model depth
|
| 4 |
+
width_multiple: 1.25 # expand layer channels
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# CSP-Darknet backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args]
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
| 18 |
+
[-1, 1, DownC, [128]], # 2-P2/4
|
| 19 |
+
[-1, 3, BottleneckCSPA, [128]],
|
| 20 |
+
[-1, 1, DownC, [256]], # 4-P3/8
|
| 21 |
+
[-1, 15, BottleneckCSPA, [256]],
|
| 22 |
+
[-1, 1, DownC, [512]], # 6-P4/16
|
| 23 |
+
[-1, 15, BottleneckCSPA, [512]],
|
| 24 |
+
[-1, 1, DownC, [768]], # 8-P5/32
|
| 25 |
+
[-1, 7, BottleneckCSPA, [768]],
|
| 26 |
+
[-1, 1, DownC, [1024]], # 10-P6/64
|
| 27 |
+
[-1, 7, BottleneckCSPA, [1024]], # 11
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
# CSP-Dark-PAN head
|
| 31 |
+
head:
|
| 32 |
+
[[-1, 1, SPPCSPC, [512]], # 12
|
| 33 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 35 |
+
[-6, 1, Conv, [384, 1, 1]], # route backbone P5
|
| 36 |
+
[[-1, -2], 1, Concat, [1]],
|
| 37 |
+
[-1, 3, BottleneckCSPB, [384]], # 17
|
| 38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 39 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 40 |
+
[-13, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 41 |
+
[[-1, -2], 1, Concat, [1]],
|
| 42 |
+
[-1, 3, BottleneckCSPB, [256]], # 22
|
| 43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 44 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 45 |
+
[-20, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 46 |
+
[[-1, -2], 1, Concat, [1]],
|
| 47 |
+
[-1, 3, BottleneckCSPB, [128]], # 27
|
| 48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 49 |
+
[-2, 1, DownC, [256]],
|
| 50 |
+
[[-1, 22], 1, Concat, [1]], # cat
|
| 51 |
+
[-1, 3, BottleneckCSPB, [256]], # 31
|
| 52 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 53 |
+
[-2, 1, DownC, [384]],
|
| 54 |
+
[[-1, 17], 1, Concat, [1]], # cat
|
| 55 |
+
[-1, 3, BottleneckCSPB, [384]], # 35
|
| 56 |
+
[-1, 1, Conv, [768, 3, 1]],
|
| 57 |
+
[-2, 1, DownC, [512]],
|
| 58 |
+
[[-1, 12], 1, Concat, [1]], # cat
|
| 59 |
+
[-1, 3, BottleneckCSPB, [512]], # 39
|
| 60 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
| 61 |
+
|
| 62 |
+
[[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 63 |
+
]
|
cfg/baseline/yolor-e6.yaml
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # expand model depth
|
| 4 |
+
width_multiple: 1.25 # expand layer channels
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# CSP-Darknet backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args]
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
| 18 |
+
[-1, 1, DownC, [128]], # 2-P2/4
|
| 19 |
+
[-1, 3, BottleneckCSPA, [128]],
|
| 20 |
+
[-1, 1, DownC, [256]], # 4-P3/8
|
| 21 |
+
[-1, 7, BottleneckCSPA, [256]],
|
| 22 |
+
[-1, 1, DownC, [512]], # 6-P4/16
|
| 23 |
+
[-1, 7, BottleneckCSPA, [512]],
|
| 24 |
+
[-1, 1, DownC, [768]], # 8-P5/32
|
| 25 |
+
[-1, 3, BottleneckCSPA, [768]],
|
| 26 |
+
[-1, 1, DownC, [1024]], # 10-P6/64
|
| 27 |
+
[-1, 3, BottleneckCSPA, [1024]], # 11
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
# CSP-Dark-PAN head
|
| 31 |
+
head:
|
| 32 |
+
[[-1, 1, SPPCSPC, [512]], # 12
|
| 33 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 35 |
+
[-6, 1, Conv, [384, 1, 1]], # route backbone P5
|
| 36 |
+
[[-1, -2], 1, Concat, [1]],
|
| 37 |
+
[-1, 3, BottleneckCSPB, [384]], # 17
|
| 38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 39 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 40 |
+
[-13, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 41 |
+
[[-1, -2], 1, Concat, [1]],
|
| 42 |
+
[-1, 3, BottleneckCSPB, [256]], # 22
|
| 43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 44 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 45 |
+
[-20, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 46 |
+
[[-1, -2], 1, Concat, [1]],
|
| 47 |
+
[-1, 3, BottleneckCSPB, [128]], # 27
|
| 48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 49 |
+
[-2, 1, DownC, [256]],
|
| 50 |
+
[[-1, 22], 1, Concat, [1]], # cat
|
| 51 |
+
[-1, 3, BottleneckCSPB, [256]], # 31
|
| 52 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 53 |
+
[-2, 1, DownC, [384]],
|
| 54 |
+
[[-1, 17], 1, Concat, [1]], # cat
|
| 55 |
+
[-1, 3, BottleneckCSPB, [384]], # 35
|
| 56 |
+
[-1, 1, Conv, [768, 3, 1]],
|
| 57 |
+
[-2, 1, DownC, [512]],
|
| 58 |
+
[[-1, 12], 1, Concat, [1]], # cat
|
| 59 |
+
[-1, 3, BottleneckCSPB, [512]], # 39
|
| 60 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
| 61 |
+
|
| 62 |
+
[[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 63 |
+
]
|
cfg/baseline/yolor-p6.yaml
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # expand model depth
|
| 4 |
+
width_multiple: 1.0 # expand layer channels
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# CSP-Darknet backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args]
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
| 18 |
+
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
|
| 19 |
+
[-1, 3, BottleneckCSPA, [128]],
|
| 20 |
+
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
|
| 21 |
+
[-1, 7, BottleneckCSPA, [256]],
|
| 22 |
+
[-1, 1, Conv, [384, 3, 2]], # 6-P4/16
|
| 23 |
+
[-1, 7, BottleneckCSPA, [384]],
|
| 24 |
+
[-1, 1, Conv, [512, 3, 2]], # 8-P5/32
|
| 25 |
+
[-1, 3, BottleneckCSPA, [512]],
|
| 26 |
+
[-1, 1, Conv, [640, 3, 2]], # 10-P6/64
|
| 27 |
+
[-1, 3, BottleneckCSPA, [640]], # 11
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
# CSP-Dark-PAN head
|
| 31 |
+
head:
|
| 32 |
+
[[-1, 1, SPPCSPC, [320]], # 12
|
| 33 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 35 |
+
[-6, 1, Conv, [256, 1, 1]], # route backbone P5
|
| 36 |
+
[[-1, -2], 1, Concat, [1]],
|
| 37 |
+
[-1, 3, BottleneckCSPB, [256]], # 17
|
| 38 |
+
[-1, 1, Conv, [192, 1, 1]],
|
| 39 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 40 |
+
[-13, 1, Conv, [192, 1, 1]], # route backbone P4
|
| 41 |
+
[[-1, -2], 1, Concat, [1]],
|
| 42 |
+
[-1, 3, BottleneckCSPB, [192]], # 22
|
| 43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 44 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 45 |
+
[-20, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 46 |
+
[[-1, -2], 1, Concat, [1]],
|
| 47 |
+
[-1, 3, BottleneckCSPB, [128]], # 27
|
| 48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 49 |
+
[-2, 1, Conv, [192, 3, 2]],
|
| 50 |
+
[[-1, 22], 1, Concat, [1]], # cat
|
| 51 |
+
[-1, 3, BottleneckCSPB, [192]], # 31
|
| 52 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 53 |
+
[-2, 1, Conv, [256, 3, 2]],
|
| 54 |
+
[[-1, 17], 1, Concat, [1]], # cat
|
| 55 |
+
[-1, 3, BottleneckCSPB, [256]], # 35
|
| 56 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 57 |
+
[-2, 1, Conv, [320, 3, 2]],
|
| 58 |
+
[[-1, 12], 1, Concat, [1]], # cat
|
| 59 |
+
[-1, 3, BottleneckCSPB, [320]], # 39
|
| 60 |
+
[-1, 1, Conv, [640, 3, 1]],
|
| 61 |
+
|
| 62 |
+
[[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 63 |
+
]
|
cfg/baseline/yolor-w6.yaml
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # expand model depth
|
| 4 |
+
width_multiple: 1.0 # expand layer channels
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# CSP-Darknet backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args]
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
| 18 |
+
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
|
| 19 |
+
[-1, 3, BottleneckCSPA, [128]],
|
| 20 |
+
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
|
| 21 |
+
[-1, 7, BottleneckCSPA, [256]],
|
| 22 |
+
[-1, 1, Conv, [512, 3, 2]], # 6-P4/16
|
| 23 |
+
[-1, 7, BottleneckCSPA, [512]],
|
| 24 |
+
[-1, 1, Conv, [768, 3, 2]], # 8-P5/32
|
| 25 |
+
[-1, 3, BottleneckCSPA, [768]],
|
| 26 |
+
[-1, 1, Conv, [1024, 3, 2]], # 10-P6/64
|
| 27 |
+
[-1, 3, BottleneckCSPA, [1024]], # 11
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
# CSP-Dark-PAN head
|
| 31 |
+
head:
|
| 32 |
+
[[-1, 1, SPPCSPC, [512]], # 12
|
| 33 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 35 |
+
[-6, 1, Conv, [384, 1, 1]], # route backbone P5
|
| 36 |
+
[[-1, -2], 1, Concat, [1]],
|
| 37 |
+
[-1, 3, BottleneckCSPB, [384]], # 17
|
| 38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 39 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 40 |
+
[-13, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 41 |
+
[[-1, -2], 1, Concat, [1]],
|
| 42 |
+
[-1, 3, BottleneckCSPB, [256]], # 22
|
| 43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 44 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 45 |
+
[-20, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 46 |
+
[[-1, -2], 1, Concat, [1]],
|
| 47 |
+
[-1, 3, BottleneckCSPB, [128]], # 27
|
| 48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 49 |
+
[-2, 1, Conv, [256, 3, 2]],
|
| 50 |
+
[[-1, 22], 1, Concat, [1]], # cat
|
| 51 |
+
[-1, 3, BottleneckCSPB, [256]], # 31
|
| 52 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 53 |
+
[-2, 1, Conv, [384, 3, 2]],
|
| 54 |
+
[[-1, 17], 1, Concat, [1]], # cat
|
| 55 |
+
[-1, 3, BottleneckCSPB, [384]], # 35
|
| 56 |
+
[-1, 1, Conv, [768, 3, 1]],
|
| 57 |
+
[-2, 1, Conv, [512, 3, 2]],
|
| 58 |
+
[[-1, 12], 1, Concat, [1]], # cat
|
| 59 |
+
[-1, 3, BottleneckCSPB, [512]], # 39
|
| 60 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
| 61 |
+
|
| 62 |
+
[[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 63 |
+
]
|
cfg/baseline/yolov3-spp.yaml
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
| 9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
| 10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
| 11 |
+
|
| 12 |
+
# darknet53 backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
| 16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
| 17 |
+
[-1, 1, Bottleneck, [64]],
|
| 18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
| 19 |
+
[-1, 2, Bottleneck, [128]],
|
| 20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
| 21 |
+
[-1, 8, Bottleneck, [256]],
|
| 22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
| 23 |
+
[-1, 8, Bottleneck, [512]],
|
| 24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
| 25 |
+
[-1, 4, Bottleneck, [1024]], # 10
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
# YOLOv3-SPP head
|
| 29 |
+
head:
|
| 30 |
+
[[-1, 1, Bottleneck, [1024, False]],
|
| 31 |
+
[-1, 1, SPP, [512, [5, 9, 13]]],
|
| 32 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
| 33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 34 |
+
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
| 35 |
+
|
| 36 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 38 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
| 39 |
+
[-1, 1, Bottleneck, [512, False]],
|
| 40 |
+
[-1, 1, Bottleneck, [512, False]],
|
| 41 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 42 |
+
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
| 43 |
+
|
| 44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 45 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 46 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
| 47 |
+
[-1, 1, Bottleneck, [256, False]],
|
| 48 |
+
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
| 49 |
+
|
| 50 |
+
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 51 |
+
]
|
cfg/baseline/yolov3.yaml
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
| 9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
| 10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
| 11 |
+
|
| 12 |
+
# darknet53 backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
| 16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
| 17 |
+
[-1, 1, Bottleneck, [64]],
|
| 18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
| 19 |
+
[-1, 2, Bottleneck, [128]],
|
| 20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
| 21 |
+
[-1, 8, Bottleneck, [256]],
|
| 22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
| 23 |
+
[-1, 8, Bottleneck, [512]],
|
| 24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
| 25 |
+
[-1, 4, Bottleneck, [1024]], # 10
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
# YOLOv3 head
|
| 29 |
+
head:
|
| 30 |
+
[[-1, 1, Bottleneck, [1024, False]],
|
| 31 |
+
[-1, 1, Conv, [512, [1, 1]]],
|
| 32 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
| 33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 34 |
+
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
| 35 |
+
|
| 36 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 38 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
| 39 |
+
[-1, 1, Bottleneck, [512, False]],
|
| 40 |
+
[-1, 1, Bottleneck, [512, False]],
|
| 41 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 42 |
+
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
| 43 |
+
|
| 44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 45 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 46 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
| 47 |
+
[-1, 1, Bottleneck, [256, False]],
|
| 48 |
+
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
| 49 |
+
|
| 50 |
+
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 51 |
+
]
|
cfg/baseline/yolov4-csp.yaml
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
| 9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
| 10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
| 11 |
+
|
| 12 |
+
# CSP-Darknet backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
| 16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
| 17 |
+
[-1, 1, Bottleneck, [64]],
|
| 18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
| 19 |
+
[-1, 2, BottleneckCSPC, [128]],
|
| 20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
| 21 |
+
[-1, 8, BottleneckCSPC, [256]],
|
| 22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
| 23 |
+
[-1, 8, BottleneckCSPC, [512]],
|
| 24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
| 25 |
+
[-1, 4, BottleneckCSPC, [1024]], # 10
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
# CSP-Dark-PAN head
|
| 29 |
+
head:
|
| 30 |
+
[[-1, 1, SPPCSPC, [512]], # 11
|
| 31 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 32 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 33 |
+
[8, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 34 |
+
[[-1, -2], 1, Concat, [1]],
|
| 35 |
+
[-1, 2, BottleneckCSPB, [256]], # 16
|
| 36 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 38 |
+
[6, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 39 |
+
[[-1, -2], 1, Concat, [1]],
|
| 40 |
+
[-1, 2, BottleneckCSPB, [128]], # 21
|
| 41 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 42 |
+
[-2, 1, Conv, [256, 3, 2]],
|
| 43 |
+
[[-1, 16], 1, Concat, [1]], # cat
|
| 44 |
+
[-1, 2, BottleneckCSPB, [256]], # 25
|
| 45 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 46 |
+
[-2, 1, Conv, [512, 3, 2]],
|
| 47 |
+
[[-1, 11], 1, Concat, [1]], # cat
|
| 48 |
+
[-1, 2, BottleneckCSPB, [512]], # 29
|
| 49 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
| 50 |
+
|
| 51 |
+
[[22,26,30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 52 |
+
]
|
cfg/deploy/yolov7-d6.yaml
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# yolov7-d6 backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args],
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [96, 3, 1]], # 1-P1/2
|
| 18 |
+
|
| 19 |
+
[-1, 1, DownC, [192]], # 2-P2/4
|
| 20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 28 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 29 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 30 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
| 31 |
+
[-1, 1, Conv, [192, 1, 1]], # 14
|
| 32 |
+
|
| 33 |
+
[-1, 1, DownC, [384]], # 15-P3/8
|
| 34 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 35 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 36 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 41 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 42 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 43 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 44 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
| 45 |
+
[-1, 1, Conv, [384, 1, 1]], # 27
|
| 46 |
+
|
| 47 |
+
[-1, 1, DownC, [768]], # 28-P4/16
|
| 48 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 49 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 50 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 52 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 53 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 54 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 55 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 56 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 57 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 58 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
| 59 |
+
[-1, 1, Conv, [768, 1, 1]], # 40
|
| 60 |
+
|
| 61 |
+
[-1, 1, DownC, [1152]], # 41-P5/32
|
| 62 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 63 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 64 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 65 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 66 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 67 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 68 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 69 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 70 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 71 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 72 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
| 73 |
+
[-1, 1, Conv, [1152, 1, 1]], # 53
|
| 74 |
+
|
| 75 |
+
[-1, 1, DownC, [1536]], # 54-P6/64
|
| 76 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 77 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 78 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 79 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 80 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 81 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 82 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 83 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 84 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 85 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 86 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
| 87 |
+
[-1, 1, Conv, [1536, 1, 1]], # 66
|
| 88 |
+
]
|
| 89 |
+
|
| 90 |
+
# yolov7-d6 head
|
| 91 |
+
head:
|
| 92 |
+
[[-1, 1, SPPCSPC, [768]], # 67
|
| 93 |
+
|
| 94 |
+
[-1, 1, Conv, [576, 1, 1]],
|
| 95 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 96 |
+
[53, 1, Conv, [576, 1, 1]], # route backbone P5
|
| 97 |
+
[[-1, -2], 1, Concat, [1]],
|
| 98 |
+
|
| 99 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 100 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 101 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 102 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 103 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 104 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 105 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 106 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 107 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 108 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 109 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 110 |
+
[-1, 1, Conv, [576, 1, 1]], # 83
|
| 111 |
+
|
| 112 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 113 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 114 |
+
[40, 1, Conv, [384, 1, 1]], # route backbone P4
|
| 115 |
+
[[-1, -2], 1, Concat, [1]],
|
| 116 |
+
|
| 117 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 118 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 119 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 120 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 121 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 122 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 123 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 124 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 125 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 126 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 127 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 128 |
+
[-1, 1, Conv, [384, 1, 1]], # 99
|
| 129 |
+
|
| 130 |
+
[-1, 1, Conv, [192, 1, 1]],
|
| 131 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 132 |
+
[27, 1, Conv, [192, 1, 1]], # route backbone P3
|
| 133 |
+
[[-1, -2], 1, Concat, [1]],
|
| 134 |
+
|
| 135 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 136 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 137 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 138 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 139 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 140 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 141 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 142 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 143 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 144 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 145 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 146 |
+
[-1, 1, Conv, [192, 1, 1]], # 115
|
| 147 |
+
|
| 148 |
+
[-1, 1, DownC, [384]],
|
| 149 |
+
[[-1, 99], 1, Concat, [1]],
|
| 150 |
+
|
| 151 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 152 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 153 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 154 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 155 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 156 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 157 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 158 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 159 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 160 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 161 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 162 |
+
[-1, 1, Conv, [384, 1, 1]], # 129
|
| 163 |
+
|
| 164 |
+
[-1, 1, DownC, [576]],
|
| 165 |
+
[[-1, 83], 1, Concat, [1]],
|
| 166 |
+
|
| 167 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 168 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 169 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 170 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 171 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 172 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 173 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 174 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 175 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 176 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 177 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 178 |
+
[-1, 1, Conv, [576, 1, 1]], # 143
|
| 179 |
+
|
| 180 |
+
[-1, 1, DownC, [768]],
|
| 181 |
+
[[-1, 67], 1, Concat, [1]],
|
| 182 |
+
|
| 183 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 184 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 185 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 186 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 187 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 188 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 189 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 190 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 191 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 192 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 193 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 194 |
+
[-1, 1, Conv, [768, 1, 1]], # 157
|
| 195 |
+
|
| 196 |
+
[115, 1, Conv, [384, 3, 1]],
|
| 197 |
+
[129, 1, Conv, [768, 3, 1]],
|
| 198 |
+
[143, 1, Conv, [1152, 3, 1]],
|
| 199 |
+
[157, 1, Conv, [1536, 3, 1]],
|
| 200 |
+
|
| 201 |
+
[[158,159,160,161], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 202 |
+
]
|
cfg/deploy/yolov7-e6.yaml
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# yolov7-e6 backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args],
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [80, 3, 1]], # 1-P1/2
|
| 18 |
+
|
| 19 |
+
[-1, 1, DownC, [160]], # 2-P2/4
|
| 20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 28 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 29 |
+
[-1, 1, Conv, [160, 1, 1]], # 12
|
| 30 |
+
|
| 31 |
+
[-1, 1, DownC, [320]], # 13-P3/8
|
| 32 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 33 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 34 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 35 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 36 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 40 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 41 |
+
[-1, 1, Conv, [320, 1, 1]], # 23
|
| 42 |
+
|
| 43 |
+
[-1, 1, DownC, [640]], # 24-P4/16
|
| 44 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 45 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 46 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 47 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 49 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 50 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 52 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 53 |
+
[-1, 1, Conv, [640, 1, 1]], # 34
|
| 54 |
+
|
| 55 |
+
[-1, 1, DownC, [960]], # 35-P5/32
|
| 56 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 57 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 58 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 59 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 60 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 61 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 62 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 63 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 64 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 65 |
+
[-1, 1, Conv, [960, 1, 1]], # 45
|
| 66 |
+
|
| 67 |
+
[-1, 1, DownC, [1280]], # 46-P6/64
|
| 68 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 69 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 70 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 71 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 72 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 73 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 74 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 75 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 76 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 77 |
+
[-1, 1, Conv, [1280, 1, 1]], # 56
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
# yolov7-e6 head
|
| 81 |
+
head:
|
| 82 |
+
[[-1, 1, SPPCSPC, [640]], # 57
|
| 83 |
+
|
| 84 |
+
[-1, 1, Conv, [480, 1, 1]],
|
| 85 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 86 |
+
[45, 1, Conv, [480, 1, 1]], # route backbone P5
|
| 87 |
+
[[-1, -2], 1, Concat, [1]],
|
| 88 |
+
|
| 89 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 90 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 91 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 92 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 93 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 94 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 95 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 96 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 97 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 98 |
+
[-1, 1, Conv, [480, 1, 1]], # 71
|
| 99 |
+
|
| 100 |
+
[-1, 1, Conv, [320, 1, 1]],
|
| 101 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 102 |
+
[34, 1, Conv, [320, 1, 1]], # route backbone P4
|
| 103 |
+
[[-1, -2], 1, Concat, [1]],
|
| 104 |
+
|
| 105 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 106 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 107 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 108 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 109 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 110 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 111 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 112 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 113 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 114 |
+
[-1, 1, Conv, [320, 1, 1]], # 85
|
| 115 |
+
|
| 116 |
+
[-1, 1, Conv, [160, 1, 1]],
|
| 117 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 118 |
+
[23, 1, Conv, [160, 1, 1]], # route backbone P3
|
| 119 |
+
[[-1, -2], 1, Concat, [1]],
|
| 120 |
+
|
| 121 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 122 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 123 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 124 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 125 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 126 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 127 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 128 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 129 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 130 |
+
[-1, 1, Conv, [160, 1, 1]], # 99
|
| 131 |
+
|
| 132 |
+
[-1, 1, DownC, [320]],
|
| 133 |
+
[[-1, 85], 1, Concat, [1]],
|
| 134 |
+
|
| 135 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 136 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 137 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 138 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 139 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 140 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 141 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 142 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 143 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 144 |
+
[-1, 1, Conv, [320, 1, 1]], # 111
|
| 145 |
+
|
| 146 |
+
[-1, 1, DownC, [480]],
|
| 147 |
+
[[-1, 71], 1, Concat, [1]],
|
| 148 |
+
|
| 149 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 150 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 151 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 152 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 153 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 154 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 155 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 156 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 157 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 158 |
+
[-1, 1, Conv, [480, 1, 1]], # 123
|
| 159 |
+
|
| 160 |
+
[-1, 1, DownC, [640]],
|
| 161 |
+
[[-1, 57], 1, Concat, [1]],
|
| 162 |
+
|
| 163 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 164 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 165 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 166 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 167 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 168 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 169 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 170 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 171 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 172 |
+
[-1, 1, Conv, [640, 1, 1]], # 135
|
| 173 |
+
|
| 174 |
+
[99, 1, Conv, [320, 3, 1]],
|
| 175 |
+
[111, 1, Conv, [640, 3, 1]],
|
| 176 |
+
[123, 1, Conv, [960, 3, 1]],
|
| 177 |
+
[135, 1, Conv, [1280, 3, 1]],
|
| 178 |
+
|
| 179 |
+
[[136,137,138,139], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 180 |
+
]
|
cfg/deploy/yolov7-e6e.yaml
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# yolov7-e6e backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args],
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [80, 3, 1]], # 1-P1/2
|
| 18 |
+
|
| 19 |
+
[-1, 1, DownC, [160]], # 2-P2/4
|
| 20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 28 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 29 |
+
[-1, 1, Conv, [160, 1, 1]], # 12
|
| 30 |
+
[-11, 1, Conv, [64, 1, 1]],
|
| 31 |
+
[-12, 1, Conv, [64, 1, 1]],
|
| 32 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 33 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 34 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 35 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 36 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 37 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 38 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 39 |
+
[-1, 1, Conv, [160, 1, 1]], # 22
|
| 40 |
+
[[-1, -11], 1, Shortcut, [1]], # 23
|
| 41 |
+
|
| 42 |
+
[-1, 1, DownC, [320]], # 24-P3/8
|
| 43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 45 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 46 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 47 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 48 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 49 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 50 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 51 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 52 |
+
[-1, 1, Conv, [320, 1, 1]], # 34
|
| 53 |
+
[-11, 1, Conv, [128, 1, 1]],
|
| 54 |
+
[-12, 1, Conv, [128, 1, 1]],
|
| 55 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 56 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 57 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 58 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 59 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 60 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 61 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 62 |
+
[-1, 1, Conv, [320, 1, 1]], # 44
|
| 63 |
+
[[-1, -11], 1, Shortcut, [1]], # 45
|
| 64 |
+
|
| 65 |
+
[-1, 1, DownC, [640]], # 46-P4/16
|
| 66 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 67 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 68 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 69 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 70 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 71 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 72 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 73 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 74 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 75 |
+
[-1, 1, Conv, [640, 1, 1]], # 56
|
| 76 |
+
[-11, 1, Conv, [256, 1, 1]],
|
| 77 |
+
[-12, 1, Conv, [256, 1, 1]],
|
| 78 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 79 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 80 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 81 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 82 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 83 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 84 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 85 |
+
[-1, 1, Conv, [640, 1, 1]], # 66
|
| 86 |
+
[[-1, -11], 1, Shortcut, [1]], # 67
|
| 87 |
+
|
| 88 |
+
[-1, 1, DownC, [960]], # 68-P5/32
|
| 89 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 90 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 91 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 92 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 93 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 94 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 95 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 96 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 97 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 98 |
+
[-1, 1, Conv, [960, 1, 1]], # 78
|
| 99 |
+
[-11, 1, Conv, [384, 1, 1]],
|
| 100 |
+
[-12, 1, Conv, [384, 1, 1]],
|
| 101 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 102 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 103 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 104 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 105 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 106 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 107 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 108 |
+
[-1, 1, Conv, [960, 1, 1]], # 88
|
| 109 |
+
[[-1, -11], 1, Shortcut, [1]], # 89
|
| 110 |
+
|
| 111 |
+
[-1, 1, DownC, [1280]], # 90-P6/64
|
| 112 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 113 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 114 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 115 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 116 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 117 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 118 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 119 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 120 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 121 |
+
[-1, 1, Conv, [1280, 1, 1]], # 100
|
| 122 |
+
[-11, 1, Conv, [512, 1, 1]],
|
| 123 |
+
[-12, 1, Conv, [512, 1, 1]],
|
| 124 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 125 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 126 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 127 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 128 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 129 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 130 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 131 |
+
[-1, 1, Conv, [1280, 1, 1]], # 110
|
| 132 |
+
[[-1, -11], 1, Shortcut, [1]], # 111
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
# yolov7-e6e head
|
| 136 |
+
head:
|
| 137 |
+
[[-1, 1, SPPCSPC, [640]], # 112
|
| 138 |
+
|
| 139 |
+
[-1, 1, Conv, [480, 1, 1]],
|
| 140 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 141 |
+
[89, 1, Conv, [480, 1, 1]], # route backbone P5
|
| 142 |
+
[[-1, -2], 1, Concat, [1]],
|
| 143 |
+
|
| 144 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 145 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 146 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 147 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 148 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 149 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 150 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 151 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 152 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 153 |
+
[-1, 1, Conv, [480, 1, 1]], # 126
|
| 154 |
+
[-11, 1, Conv, [384, 1, 1]],
|
| 155 |
+
[-12, 1, Conv, [384, 1, 1]],
|
| 156 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 157 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 158 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 159 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 160 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 161 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 162 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 163 |
+
[-1, 1, Conv, [480, 1, 1]], # 136
|
| 164 |
+
[[-1, -11], 1, Shortcut, [1]], # 137
|
| 165 |
+
|
| 166 |
+
[-1, 1, Conv, [320, 1, 1]],
|
| 167 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 168 |
+
[67, 1, Conv, [320, 1, 1]], # route backbone P4
|
| 169 |
+
[[-1, -2], 1, Concat, [1]],
|
| 170 |
+
|
| 171 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 172 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 173 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 174 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 175 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 176 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 177 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 178 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 179 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 180 |
+
[-1, 1, Conv, [320, 1, 1]], # 151
|
| 181 |
+
[-11, 1, Conv, [256, 1, 1]],
|
| 182 |
+
[-12, 1, Conv, [256, 1, 1]],
|
| 183 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 184 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 185 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 186 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 187 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 188 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 189 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 190 |
+
[-1, 1, Conv, [320, 1, 1]], # 161
|
| 191 |
+
[[-1, -11], 1, Shortcut, [1]], # 162
|
| 192 |
+
|
| 193 |
+
[-1, 1, Conv, [160, 1, 1]],
|
| 194 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 195 |
+
[45, 1, Conv, [160, 1, 1]], # route backbone P3
|
| 196 |
+
[[-1, -2], 1, Concat, [1]],
|
| 197 |
+
|
| 198 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 199 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 200 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 201 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 202 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 203 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 204 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 205 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 206 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 207 |
+
[-1, 1, Conv, [160, 1, 1]], # 176
|
| 208 |
+
[-11, 1, Conv, [128, 1, 1]],
|
| 209 |
+
[-12, 1, Conv, [128, 1, 1]],
|
| 210 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 211 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 212 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 213 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 214 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 215 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 216 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 217 |
+
[-1, 1, Conv, [160, 1, 1]], # 186
|
| 218 |
+
[[-1, -11], 1, Shortcut, [1]], # 187
|
| 219 |
+
|
| 220 |
+
[-1, 1, DownC, [320]],
|
| 221 |
+
[[-1, 162], 1, Concat, [1]],
|
| 222 |
+
|
| 223 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 224 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 225 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 226 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 227 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 228 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 229 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 230 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 231 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 232 |
+
[-1, 1, Conv, [320, 1, 1]], # 199
|
| 233 |
+
[-11, 1, Conv, [256, 1, 1]],
|
| 234 |
+
[-12, 1, Conv, [256, 1, 1]],
|
| 235 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 236 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 237 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 238 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 239 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 240 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 241 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 242 |
+
[-1, 1, Conv, [320, 1, 1]], # 209
|
| 243 |
+
[[-1, -11], 1, Shortcut, [1]], # 210
|
| 244 |
+
|
| 245 |
+
[-1, 1, DownC, [480]],
|
| 246 |
+
[[-1, 137], 1, Concat, [1]],
|
| 247 |
+
|
| 248 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 249 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 250 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 251 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 252 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 253 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 254 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 255 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 256 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 257 |
+
[-1, 1, Conv, [480, 1, 1]], # 222
|
| 258 |
+
[-11, 1, Conv, [384, 1, 1]],
|
| 259 |
+
[-12, 1, Conv, [384, 1, 1]],
|
| 260 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 261 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 262 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 263 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 264 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 265 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 266 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 267 |
+
[-1, 1, Conv, [480, 1, 1]], # 232
|
| 268 |
+
[[-1, -11], 1, Shortcut, [1]], # 233
|
| 269 |
+
|
| 270 |
+
[-1, 1, DownC, [640]],
|
| 271 |
+
[[-1, 112], 1, Concat, [1]],
|
| 272 |
+
|
| 273 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 274 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 275 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 276 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 277 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 278 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 279 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 280 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 281 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 282 |
+
[-1, 1, Conv, [640, 1, 1]], # 245
|
| 283 |
+
[-11, 1, Conv, [512, 1, 1]],
|
| 284 |
+
[-12, 1, Conv, [512, 1, 1]],
|
| 285 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 286 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 287 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 288 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 289 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 290 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 291 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 292 |
+
[-1, 1, Conv, [640, 1, 1]], # 255
|
| 293 |
+
[[-1, -11], 1, Shortcut, [1]], # 256
|
| 294 |
+
|
| 295 |
+
[187, 1, Conv, [320, 3, 1]],
|
| 296 |
+
[210, 1, Conv, [640, 3, 1]],
|
| 297 |
+
[233, 1, Conv, [960, 3, 1]],
|
| 298 |
+
[256, 1, Conv, [1280, 3, 1]],
|
| 299 |
+
|
| 300 |
+
[[257,258,259,260], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 301 |
+
]
|
cfg/deploy/yolov7-tiny-silu.yaml
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
| 9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
| 10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
| 11 |
+
|
| 12 |
+
# YOLOv7-tiny backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Conv, [32, 3, 2]], # 0-P1/2
|
| 16 |
+
|
| 17 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P2/4
|
| 18 |
+
|
| 19 |
+
[-1, 1, Conv, [32, 1, 1]],
|
| 20 |
+
[-2, 1, Conv, [32, 1, 1]],
|
| 21 |
+
[-1, 1, Conv, [32, 3, 1]],
|
| 22 |
+
[-1, 1, Conv, [32, 3, 1]],
|
| 23 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 24 |
+
[-1, 1, Conv, [64, 1, 1]], # 7
|
| 25 |
+
|
| 26 |
+
[-1, 1, MP, []], # 8-P3/8
|
| 27 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 28 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 29 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 30 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 31 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 32 |
+
[-1, 1, Conv, [128, 1, 1]], # 14
|
| 33 |
+
|
| 34 |
+
[-1, 1, MP, []], # 15-P4/16
|
| 35 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 36 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 39 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 40 |
+
[-1, 1, Conv, [256, 1, 1]], # 21
|
| 41 |
+
|
| 42 |
+
[-1, 1, MP, []], # 22-P5/32
|
| 43 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 44 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 45 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 46 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 47 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 48 |
+
[-1, 1, Conv, [512, 1, 1]], # 28
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
# YOLOv7-tiny head
|
| 52 |
+
head:
|
| 53 |
+
[[-1, 1, Conv, [256, 1, 1]],
|
| 54 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 55 |
+
[-1, 1, SP, [5]],
|
| 56 |
+
[-2, 1, SP, [9]],
|
| 57 |
+
[-3, 1, SP, [13]],
|
| 58 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 59 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 60 |
+
[[-1, -7], 1, Concat, [1]],
|
| 61 |
+
[-1, 1, Conv, [256, 1, 1]], # 37
|
| 62 |
+
|
| 63 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 64 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 65 |
+
[21, 1, Conv, [128, 1, 1]], # route backbone P4
|
| 66 |
+
[[-1, -2], 1, Concat, [1]],
|
| 67 |
+
|
| 68 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 69 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 70 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 71 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 72 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 73 |
+
[-1, 1, Conv, [128, 1, 1]], # 47
|
| 74 |
+
|
| 75 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 76 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 77 |
+
[14, 1, Conv, [64, 1, 1]], # route backbone P3
|
| 78 |
+
[[-1, -2], 1, Concat, [1]],
|
| 79 |
+
|
| 80 |
+
[-1, 1, Conv, [32, 1, 1]],
|
| 81 |
+
[-2, 1, Conv, [32, 1, 1]],
|
| 82 |
+
[-1, 1, Conv, [32, 3, 1]],
|
| 83 |
+
[-1, 1, Conv, [32, 3, 1]],
|
| 84 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 85 |
+
[-1, 1, Conv, [64, 1, 1]], # 57
|
| 86 |
+
|
| 87 |
+
[-1, 1, Conv, [128, 3, 2]],
|
| 88 |
+
[[-1, 47], 1, Concat, [1]],
|
| 89 |
+
|
| 90 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 91 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 92 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 93 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 94 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 95 |
+
[-1, 1, Conv, [128, 1, 1]], # 65
|
| 96 |
+
|
| 97 |
+
[-1, 1, Conv, [256, 3, 2]],
|
| 98 |
+
[[-1, 37], 1, Concat, [1]],
|
| 99 |
+
|
| 100 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 101 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 102 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 103 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 104 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 105 |
+
[-1, 1, Conv, [256, 1, 1]], # 73
|
| 106 |
+
|
| 107 |
+
[57, 1, Conv, [128, 3, 1]],
|
| 108 |
+
[65, 1, Conv, [256, 3, 1]],
|
| 109 |
+
[73, 1, Conv, [512, 3, 1]],
|
| 110 |
+
|
| 111 |
+
[[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 112 |
+
]
|
cfg/deploy/yolov7-tiny.yaml
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
| 9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
| 10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
| 11 |
+
|
| 12 |
+
# yolov7-tiny backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
|
| 15 |
+
[[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2
|
| 16 |
+
|
| 17 |
+
[-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4
|
| 18 |
+
|
| 19 |
+
[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 20 |
+
[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 21 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 22 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 23 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 24 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7
|
| 25 |
+
|
| 26 |
+
[-1, 1, MP, []], # 8-P3/8
|
| 27 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 28 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 29 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 30 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 31 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 32 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14
|
| 33 |
+
|
| 34 |
+
[-1, 1, MP, []], # 15-P4/16
|
| 35 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 36 |
+
[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 37 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 38 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 39 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 40 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21
|
| 41 |
+
|
| 42 |
+
[-1, 1, MP, []], # 22-P5/32
|
| 43 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 44 |
+
[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 45 |
+
[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 46 |
+
[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 47 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 48 |
+
[-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
# yolov7-tiny head
|
| 52 |
+
head:
|
| 53 |
+
[[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 54 |
+
[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 55 |
+
[-1, 1, SP, [5]],
|
| 56 |
+
[-2, 1, SP, [9]],
|
| 57 |
+
[-3, 1, SP, [13]],
|
| 58 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 59 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 60 |
+
[[-1, -7], 1, Concat, [1]],
|
| 61 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37
|
| 62 |
+
|
| 63 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 64 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 65 |
+
[21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
|
| 66 |
+
[[-1, -2], 1, Concat, [1]],
|
| 67 |
+
|
| 68 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 69 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 70 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 71 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 72 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 73 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47
|
| 74 |
+
|
| 75 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 76 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 77 |
+
[14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
|
| 78 |
+
[[-1, -2], 1, Concat, [1]],
|
| 79 |
+
|
| 80 |
+
[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 81 |
+
[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 82 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 83 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 84 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 85 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57
|
| 86 |
+
|
| 87 |
+
[-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
|
| 88 |
+
[[-1, 47], 1, Concat, [1]],
|
| 89 |
+
|
| 90 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 91 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 92 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 93 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 94 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 95 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65
|
| 96 |
+
|
| 97 |
+
[-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
|
| 98 |
+
[[-1, 37], 1, Concat, [1]],
|
| 99 |
+
|
| 100 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 101 |
+
[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 102 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 103 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 104 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 105 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73
|
| 106 |
+
|
| 107 |
+
[57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 108 |
+
[65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 109 |
+
[73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 110 |
+
|
| 111 |
+
[[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 112 |
+
]
|
cfg/deploy/yolov7-w6.yaml
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# yolov7-w6 backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args]
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
| 18 |
+
|
| 19 |
+
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
|
| 20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 27 |
+
[-1, 1, Conv, [128, 1, 1]], # 10
|
| 28 |
+
|
| 29 |
+
[-1, 1, Conv, [256, 3, 2]], # 11-P3/8
|
| 30 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 31 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 32 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 33 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 34 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 35 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 36 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 37 |
+
[-1, 1, Conv, [256, 1, 1]], # 19
|
| 38 |
+
|
| 39 |
+
[-1, 1, Conv, [512, 3, 2]], # 20-P4/16
|
| 40 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 41 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 42 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 43 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 44 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 45 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 46 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 47 |
+
[-1, 1, Conv, [512, 1, 1]], # 28
|
| 48 |
+
|
| 49 |
+
[-1, 1, Conv, [768, 3, 2]], # 29-P5/32
|
| 50 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 51 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 52 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 53 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 54 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 55 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 56 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 57 |
+
[-1, 1, Conv, [768, 1, 1]], # 37
|
| 58 |
+
|
| 59 |
+
[-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
|
| 60 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 61 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 62 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 63 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 64 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 65 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 66 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 67 |
+
[-1, 1, Conv, [1024, 1, 1]], # 46
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
# yolov7-w6 head
|
| 71 |
+
head:
|
| 72 |
+
[[-1, 1, SPPCSPC, [512]], # 47
|
| 73 |
+
|
| 74 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 75 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 76 |
+
[37, 1, Conv, [384, 1, 1]], # route backbone P5
|
| 77 |
+
[[-1, -2], 1, Concat, [1]],
|
| 78 |
+
|
| 79 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 80 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 81 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 82 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 83 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 84 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 85 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 86 |
+
[-1, 1, Conv, [384, 1, 1]], # 59
|
| 87 |
+
|
| 88 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 89 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 90 |
+
[28, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 91 |
+
[[-1, -2], 1, Concat, [1]],
|
| 92 |
+
|
| 93 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 94 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 95 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 96 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 97 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 98 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 99 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 100 |
+
[-1, 1, Conv, [256, 1, 1]], # 71
|
| 101 |
+
|
| 102 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 103 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 104 |
+
[19, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 105 |
+
[[-1, -2], 1, Concat, [1]],
|
| 106 |
+
|
| 107 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 108 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 109 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 110 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 111 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 112 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 113 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 114 |
+
[-1, 1, Conv, [128, 1, 1]], # 83
|
| 115 |
+
|
| 116 |
+
[-1, 1, Conv, [256, 3, 2]],
|
| 117 |
+
[[-1, 71], 1, Concat, [1]], # cat
|
| 118 |
+
|
| 119 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 120 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 121 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 122 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 123 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 124 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 125 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 126 |
+
[-1, 1, Conv, [256, 1, 1]], # 93
|
| 127 |
+
|
| 128 |
+
[-1, 1, Conv, [384, 3, 2]],
|
| 129 |
+
[[-1, 59], 1, Concat, [1]], # cat
|
| 130 |
+
|
| 131 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 132 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 133 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 134 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 135 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 136 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 137 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 138 |
+
[-1, 1, Conv, [384, 1, 1]], # 103
|
| 139 |
+
|
| 140 |
+
[-1, 1, Conv, [512, 3, 2]],
|
| 141 |
+
[[-1, 47], 1, Concat, [1]], # cat
|
| 142 |
+
|
| 143 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 144 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 145 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 146 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 147 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 148 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 149 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 150 |
+
[-1, 1, Conv, [512, 1, 1]], # 113
|
| 151 |
+
|
| 152 |
+
[83, 1, Conv, [256, 3, 1]],
|
| 153 |
+
[93, 1, Conv, [512, 3, 1]],
|
| 154 |
+
[103, 1, Conv, [768, 3, 1]],
|
| 155 |
+
[113, 1, Conv, [1024, 3, 1]],
|
| 156 |
+
|
| 157 |
+
[[114,115,116,117], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 158 |
+
]
|
cfg/deploy/yolov7.yaml
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
| 9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
| 10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
| 11 |
+
|
| 12 |
+
# yolov7 backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
| 16 |
+
|
| 17 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
| 18 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 19 |
+
|
| 20 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
| 21 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 27 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 28 |
+
[-1, 1, Conv, [256, 1, 1]], # 11
|
| 29 |
+
|
| 30 |
+
[-1, 1, MP, []],
|
| 31 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 32 |
+
[-3, 1, Conv, [128, 1, 1]],
|
| 33 |
+
[-1, 1, Conv, [128, 3, 2]],
|
| 34 |
+
[[-1, -3], 1, Concat, [1]], # 16-P3/8
|
| 35 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 36 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 41 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 42 |
+
[-1, 1, Conv, [512, 1, 1]], # 24
|
| 43 |
+
|
| 44 |
+
[-1, 1, MP, []],
|
| 45 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 46 |
+
[-3, 1, Conv, [256, 1, 1]],
|
| 47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
| 48 |
+
[[-1, -3], 1, Concat, [1]], # 29-P4/16
|
| 49 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 50 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 52 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 53 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 54 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 55 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 56 |
+
[-1, 1, Conv, [1024, 1, 1]], # 37
|
| 57 |
+
|
| 58 |
+
[-1, 1, MP, []],
|
| 59 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 60 |
+
[-3, 1, Conv, [512, 1, 1]],
|
| 61 |
+
[-1, 1, Conv, [512, 3, 2]],
|
| 62 |
+
[[-1, -3], 1, Concat, [1]], # 42-P5/32
|
| 63 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 64 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 65 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 66 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 67 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 68 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 69 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 70 |
+
[-1, 1, Conv, [1024, 1, 1]], # 50
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
# yolov7 head
|
| 74 |
+
head:
|
| 75 |
+
[[-1, 1, SPPCSPC, [512]], # 51
|
| 76 |
+
|
| 77 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 78 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 79 |
+
[37, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 80 |
+
[[-1, -2], 1, Concat, [1]],
|
| 81 |
+
|
| 82 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 83 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 84 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 85 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 86 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 87 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 88 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 89 |
+
[-1, 1, Conv, [256, 1, 1]], # 63
|
| 90 |
+
|
| 91 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 92 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 93 |
+
[24, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 94 |
+
[[-1, -2], 1, Concat, [1]],
|
| 95 |
+
|
| 96 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 97 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 98 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 99 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 100 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 101 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 102 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 103 |
+
[-1, 1, Conv, [128, 1, 1]], # 75
|
| 104 |
+
|
| 105 |
+
[-1, 1, MP, []],
|
| 106 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 107 |
+
[-3, 1, Conv, [128, 1, 1]],
|
| 108 |
+
[-1, 1, Conv, [128, 3, 2]],
|
| 109 |
+
[[-1, -3, 63], 1, Concat, [1]],
|
| 110 |
+
|
| 111 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 112 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 113 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 114 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 115 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 116 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 117 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 118 |
+
[-1, 1, Conv, [256, 1, 1]], # 88
|
| 119 |
+
|
| 120 |
+
[-1, 1, MP, []],
|
| 121 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 122 |
+
[-3, 1, Conv, [256, 1, 1]],
|
| 123 |
+
[-1, 1, Conv, [256, 3, 2]],
|
| 124 |
+
[[-1, -3, 51], 1, Concat, [1]],
|
| 125 |
+
|
| 126 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 127 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 128 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 129 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 130 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 131 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 132 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 133 |
+
[-1, 1, Conv, [512, 1, 1]], # 101
|
| 134 |
+
|
| 135 |
+
[75, 1, RepConv, [256, 3, 1]],
|
| 136 |
+
[88, 1, RepConv, [512, 3, 1]],
|
| 137 |
+
[101, 1, RepConv, [1024, 3, 1]],
|
| 138 |
+
|
| 139 |
+
[[102,103,104], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 140 |
+
]
|
cfg/deploy/yolov7x.yaml
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
| 9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
| 10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
| 11 |
+
|
| 12 |
+
# yolov7x backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Conv, [40, 3, 1]], # 0
|
| 16 |
+
|
| 17 |
+
[-1, 1, Conv, [80, 3, 2]], # 1-P1/2
|
| 18 |
+
[-1, 1, Conv, [80, 3, 1]],
|
| 19 |
+
|
| 20 |
+
[-1, 1, Conv, [160, 3, 2]], # 3-P2/4
|
| 21 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 28 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 29 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 30 |
+
[-1, 1, Conv, [320, 1, 1]], # 13
|
| 31 |
+
|
| 32 |
+
[-1, 1, MP, []],
|
| 33 |
+
[-1, 1, Conv, [160, 1, 1]],
|
| 34 |
+
[-3, 1, Conv, [160, 1, 1]],
|
| 35 |
+
[-1, 1, Conv, [160, 3, 2]],
|
| 36 |
+
[[-1, -3], 1, Concat, [1]], # 18-P3/8
|
| 37 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 38 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 41 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 42 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 43 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 44 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 45 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 46 |
+
[-1, 1, Conv, [640, 1, 1]], # 28
|
| 47 |
+
|
| 48 |
+
[-1, 1, MP, []],
|
| 49 |
+
[-1, 1, Conv, [320, 1, 1]],
|
| 50 |
+
[-3, 1, Conv, [320, 1, 1]],
|
| 51 |
+
[-1, 1, Conv, [320, 3, 2]],
|
| 52 |
+
[[-1, -3], 1, Concat, [1]], # 33-P4/16
|
| 53 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 54 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 55 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 56 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 57 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 58 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 59 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 60 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 61 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 62 |
+
[-1, 1, Conv, [1280, 1, 1]], # 43
|
| 63 |
+
|
| 64 |
+
[-1, 1, MP, []],
|
| 65 |
+
[-1, 1, Conv, [640, 1, 1]],
|
| 66 |
+
[-3, 1, Conv, [640, 1, 1]],
|
| 67 |
+
[-1, 1, Conv, [640, 3, 2]],
|
| 68 |
+
[[-1, -3], 1, Concat, [1]], # 48-P5/32
|
| 69 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 70 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 71 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 72 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 73 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 74 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 75 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 76 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 77 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 78 |
+
[-1, 1, Conv, [1280, 1, 1]], # 58
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
# yolov7x head
|
| 82 |
+
head:
|
| 83 |
+
[[-1, 1, SPPCSPC, [640]], # 59
|
| 84 |
+
|
| 85 |
+
[-1, 1, Conv, [320, 1, 1]],
|
| 86 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 87 |
+
[43, 1, Conv, [320, 1, 1]], # route backbone P4
|
| 88 |
+
[[-1, -2], 1, Concat, [1]],
|
| 89 |
+
|
| 90 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 91 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 92 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 93 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 94 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 95 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 96 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 97 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 98 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 99 |
+
[-1, 1, Conv, [320, 1, 1]], # 73
|
| 100 |
+
|
| 101 |
+
[-1, 1, Conv, [160, 1, 1]],
|
| 102 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 103 |
+
[28, 1, Conv, [160, 1, 1]], # route backbone P3
|
| 104 |
+
[[-1, -2], 1, Concat, [1]],
|
| 105 |
+
|
| 106 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 107 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 108 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 109 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 110 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 111 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 112 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 113 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 114 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 115 |
+
[-1, 1, Conv, [160, 1, 1]], # 87
|
| 116 |
+
|
| 117 |
+
[-1, 1, MP, []],
|
| 118 |
+
[-1, 1, Conv, [160, 1, 1]],
|
| 119 |
+
[-3, 1, Conv, [160, 1, 1]],
|
| 120 |
+
[-1, 1, Conv, [160, 3, 2]],
|
| 121 |
+
[[-1, -3, 73], 1, Concat, [1]],
|
| 122 |
+
|
| 123 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 124 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 125 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 126 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 127 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 128 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 129 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 130 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 131 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 132 |
+
[-1, 1, Conv, [320, 1, 1]], # 102
|
| 133 |
+
|
| 134 |
+
[-1, 1, MP, []],
|
| 135 |
+
[-1, 1, Conv, [320, 1, 1]],
|
| 136 |
+
[-3, 1, Conv, [320, 1, 1]],
|
| 137 |
+
[-1, 1, Conv, [320, 3, 2]],
|
| 138 |
+
[[-1, -3, 59], 1, Concat, [1]],
|
| 139 |
+
|
| 140 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 141 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 142 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 143 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 144 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 145 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 146 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 147 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 148 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 149 |
+
[-1, 1, Conv, [640, 1, 1]], # 117
|
| 150 |
+
|
| 151 |
+
[87, 1, Conv, [320, 3, 1]],
|
| 152 |
+
[102, 1, Conv, [640, 3, 1]],
|
| 153 |
+
[117, 1, Conv, [1280, 3, 1]],
|
| 154 |
+
|
| 155 |
+
[[118,119,120], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 156 |
+
]
|
cfg/training/yolov7-d6.yaml
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# yolov7 backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args],
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [96, 3, 1]], # 1-P1/2
|
| 18 |
+
|
| 19 |
+
[-1, 1, DownC, [192]], # 2-P2/4
|
| 20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 28 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 29 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 30 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
| 31 |
+
[-1, 1, Conv, [192, 1, 1]], # 14
|
| 32 |
+
|
| 33 |
+
[-1, 1, DownC, [384]], # 15-P3/8
|
| 34 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 35 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 36 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 41 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 42 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 43 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 44 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
| 45 |
+
[-1, 1, Conv, [384, 1, 1]], # 27
|
| 46 |
+
|
| 47 |
+
[-1, 1, DownC, [768]], # 28-P4/16
|
| 48 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 49 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 50 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 52 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 53 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 54 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 55 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 56 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 57 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 58 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
| 59 |
+
[-1, 1, Conv, [768, 1, 1]], # 40
|
| 60 |
+
|
| 61 |
+
[-1, 1, DownC, [1152]], # 41-P5/32
|
| 62 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 63 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 64 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 65 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 66 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 67 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 68 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 69 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 70 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 71 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 72 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
| 73 |
+
[-1, 1, Conv, [1152, 1, 1]], # 53
|
| 74 |
+
|
| 75 |
+
[-1, 1, DownC, [1536]], # 54-P6/64
|
| 76 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 77 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 78 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 79 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 80 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 81 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 82 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 83 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 84 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 85 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 86 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
| 87 |
+
[-1, 1, Conv, [1536, 1, 1]], # 66
|
| 88 |
+
]
|
| 89 |
+
|
| 90 |
+
# yolov7 head
|
| 91 |
+
head:
|
| 92 |
+
[[-1, 1, SPPCSPC, [768]], # 67
|
| 93 |
+
|
| 94 |
+
[-1, 1, Conv, [576, 1, 1]],
|
| 95 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 96 |
+
[53, 1, Conv, [576, 1, 1]], # route backbone P5
|
| 97 |
+
[[-1, -2], 1, Concat, [1]],
|
| 98 |
+
|
| 99 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 100 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 101 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 102 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 103 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 104 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 105 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 106 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 107 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 108 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 109 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 110 |
+
[-1, 1, Conv, [576, 1, 1]], # 83
|
| 111 |
+
|
| 112 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 113 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 114 |
+
[40, 1, Conv, [384, 1, 1]], # route backbone P4
|
| 115 |
+
[[-1, -2], 1, Concat, [1]],
|
| 116 |
+
|
| 117 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 118 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 119 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 120 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 121 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 122 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 123 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 124 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 125 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 126 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 127 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 128 |
+
[-1, 1, Conv, [384, 1, 1]], # 99
|
| 129 |
+
|
| 130 |
+
[-1, 1, Conv, [192, 1, 1]],
|
| 131 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 132 |
+
[27, 1, Conv, [192, 1, 1]], # route backbone P3
|
| 133 |
+
[[-1, -2], 1, Concat, [1]],
|
| 134 |
+
|
| 135 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 136 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 137 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 138 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 139 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 140 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 141 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 142 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 143 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 144 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 145 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 146 |
+
[-1, 1, Conv, [192, 1, 1]], # 115
|
| 147 |
+
|
| 148 |
+
[-1, 1, DownC, [384]],
|
| 149 |
+
[[-1, 99], 1, Concat, [1]],
|
| 150 |
+
|
| 151 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 152 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 153 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 154 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 155 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 156 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 157 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 158 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 159 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 160 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 161 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 162 |
+
[-1, 1, Conv, [384, 1, 1]], # 129
|
| 163 |
+
|
| 164 |
+
[-1, 1, DownC, [576]],
|
| 165 |
+
[[-1, 83], 1, Concat, [1]],
|
| 166 |
+
|
| 167 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 168 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 169 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 170 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 171 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 172 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 173 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 174 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 175 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 176 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 177 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 178 |
+
[-1, 1, Conv, [576, 1, 1]], # 143
|
| 179 |
+
|
| 180 |
+
[-1, 1, DownC, [768]],
|
| 181 |
+
[[-1, 67], 1, Concat, [1]],
|
| 182 |
+
|
| 183 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 184 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 185 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 186 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 187 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 188 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 189 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 190 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 191 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 192 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 193 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
| 194 |
+
[-1, 1, Conv, [768, 1, 1]], # 157
|
| 195 |
+
|
| 196 |
+
[115, 1, Conv, [384, 3, 1]],
|
| 197 |
+
[129, 1, Conv, [768, 3, 1]],
|
| 198 |
+
[143, 1, Conv, [1152, 3, 1]],
|
| 199 |
+
[157, 1, Conv, [1536, 3, 1]],
|
| 200 |
+
|
| 201 |
+
[115, 1, Conv, [384, 3, 1]],
|
| 202 |
+
[99, 1, Conv, [768, 3, 1]],
|
| 203 |
+
[83, 1, Conv, [1152, 3, 1]],
|
| 204 |
+
[67, 1, Conv, [1536, 3, 1]],
|
| 205 |
+
|
| 206 |
+
[[158,159,160,161,162,163,164,165], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 207 |
+
]
|
cfg/training/yolov7-e6.yaml
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# yolov7 backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args],
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [80, 3, 1]], # 1-P1/2
|
| 18 |
+
|
| 19 |
+
[-1, 1, DownC, [160]], # 2-P2/4
|
| 20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 28 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 29 |
+
[-1, 1, Conv, [160, 1, 1]], # 12
|
| 30 |
+
|
| 31 |
+
[-1, 1, DownC, [320]], # 13-P3/8
|
| 32 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 33 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 34 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 35 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 36 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 40 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 41 |
+
[-1, 1, Conv, [320, 1, 1]], # 23
|
| 42 |
+
|
| 43 |
+
[-1, 1, DownC, [640]], # 24-P4/16
|
| 44 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 45 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 46 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 47 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 49 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 50 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 52 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 53 |
+
[-1, 1, Conv, [640, 1, 1]], # 34
|
| 54 |
+
|
| 55 |
+
[-1, 1, DownC, [960]], # 35-P5/32
|
| 56 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 57 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 58 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 59 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 60 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 61 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 62 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 63 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 64 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 65 |
+
[-1, 1, Conv, [960, 1, 1]], # 45
|
| 66 |
+
|
| 67 |
+
[-1, 1, DownC, [1280]], # 46-P6/64
|
| 68 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 69 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 70 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 71 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 72 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 73 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 74 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 75 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 76 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 77 |
+
[-1, 1, Conv, [1280, 1, 1]], # 56
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
# yolov7 head
|
| 81 |
+
head:
|
| 82 |
+
[[-1, 1, SPPCSPC, [640]], # 57
|
| 83 |
+
|
| 84 |
+
[-1, 1, Conv, [480, 1, 1]],
|
| 85 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 86 |
+
[45, 1, Conv, [480, 1, 1]], # route backbone P5
|
| 87 |
+
[[-1, -2], 1, Concat, [1]],
|
| 88 |
+
|
| 89 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 90 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 91 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 92 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 93 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 94 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 95 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 96 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 97 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 98 |
+
[-1, 1, Conv, [480, 1, 1]], # 71
|
| 99 |
+
|
| 100 |
+
[-1, 1, Conv, [320, 1, 1]],
|
| 101 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 102 |
+
[34, 1, Conv, [320, 1, 1]], # route backbone P4
|
| 103 |
+
[[-1, -2], 1, Concat, [1]],
|
| 104 |
+
|
| 105 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 106 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 107 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 108 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 109 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 110 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 111 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 112 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 113 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 114 |
+
[-1, 1, Conv, [320, 1, 1]], # 85
|
| 115 |
+
|
| 116 |
+
[-1, 1, Conv, [160, 1, 1]],
|
| 117 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 118 |
+
[23, 1, Conv, [160, 1, 1]], # route backbone P3
|
| 119 |
+
[[-1, -2], 1, Concat, [1]],
|
| 120 |
+
|
| 121 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 122 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 123 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 124 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 125 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 126 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 127 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 128 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 129 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 130 |
+
[-1, 1, Conv, [160, 1, 1]], # 99
|
| 131 |
+
|
| 132 |
+
[-1, 1, DownC, [320]],
|
| 133 |
+
[[-1, 85], 1, Concat, [1]],
|
| 134 |
+
|
| 135 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 136 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 137 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 138 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 139 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 140 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 141 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 142 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 143 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 144 |
+
[-1, 1, Conv, [320, 1, 1]], # 111
|
| 145 |
+
|
| 146 |
+
[-1, 1, DownC, [480]],
|
| 147 |
+
[[-1, 71], 1, Concat, [1]],
|
| 148 |
+
|
| 149 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 150 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 151 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 152 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 153 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 154 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 155 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 156 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 157 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 158 |
+
[-1, 1, Conv, [480, 1, 1]], # 123
|
| 159 |
+
|
| 160 |
+
[-1, 1, DownC, [640]],
|
| 161 |
+
[[-1, 57], 1, Concat, [1]],
|
| 162 |
+
|
| 163 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 164 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 165 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 166 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 167 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 168 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 169 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 170 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 171 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 172 |
+
[-1, 1, Conv, [640, 1, 1]], # 135
|
| 173 |
+
|
| 174 |
+
[99, 1, Conv, [320, 3, 1]],
|
| 175 |
+
[111, 1, Conv, [640, 3, 1]],
|
| 176 |
+
[123, 1, Conv, [960, 3, 1]],
|
| 177 |
+
[135, 1, Conv, [1280, 3, 1]],
|
| 178 |
+
|
| 179 |
+
[99, 1, Conv, [320, 3, 1]],
|
| 180 |
+
[85, 1, Conv, [640, 3, 1]],
|
| 181 |
+
[71, 1, Conv, [960, 3, 1]],
|
| 182 |
+
[57, 1, Conv, [1280, 3, 1]],
|
| 183 |
+
|
| 184 |
+
[[136,137,138,139,140,141,142,143], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 185 |
+
]
|
cfg/training/yolov7-e6e.yaml
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# yolov7 backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args],
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [80, 3, 1]], # 1-P1/2
|
| 18 |
+
|
| 19 |
+
[-1, 1, DownC, [160]], # 2-P2/4
|
| 20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 28 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 29 |
+
[-1, 1, Conv, [160, 1, 1]], # 12
|
| 30 |
+
[-11, 1, Conv, [64, 1, 1]],
|
| 31 |
+
[-12, 1, Conv, [64, 1, 1]],
|
| 32 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 33 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 34 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 35 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 36 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 37 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 38 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 39 |
+
[-1, 1, Conv, [160, 1, 1]], # 22
|
| 40 |
+
[[-1, -11], 1, Shortcut, [1]], # 23
|
| 41 |
+
|
| 42 |
+
[-1, 1, DownC, [320]], # 24-P3/8
|
| 43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 45 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 46 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 47 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 48 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 49 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 50 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 51 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 52 |
+
[-1, 1, Conv, [320, 1, 1]], # 34
|
| 53 |
+
[-11, 1, Conv, [128, 1, 1]],
|
| 54 |
+
[-12, 1, Conv, [128, 1, 1]],
|
| 55 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 56 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 57 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 58 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 59 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 60 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 61 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 62 |
+
[-1, 1, Conv, [320, 1, 1]], # 44
|
| 63 |
+
[[-1, -11], 1, Shortcut, [1]], # 45
|
| 64 |
+
|
| 65 |
+
[-1, 1, DownC, [640]], # 46-P4/16
|
| 66 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 67 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 68 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 69 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 70 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 71 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 72 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 73 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 74 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 75 |
+
[-1, 1, Conv, [640, 1, 1]], # 56
|
| 76 |
+
[-11, 1, Conv, [256, 1, 1]],
|
| 77 |
+
[-12, 1, Conv, [256, 1, 1]],
|
| 78 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 79 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 80 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 81 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 82 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 83 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 84 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 85 |
+
[-1, 1, Conv, [640, 1, 1]], # 66
|
| 86 |
+
[[-1, -11], 1, Shortcut, [1]], # 67
|
| 87 |
+
|
| 88 |
+
[-1, 1, DownC, [960]], # 68-P5/32
|
| 89 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 90 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 91 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 92 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 93 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 94 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 95 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 96 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 97 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 98 |
+
[-1, 1, Conv, [960, 1, 1]], # 78
|
| 99 |
+
[-11, 1, Conv, [384, 1, 1]],
|
| 100 |
+
[-12, 1, Conv, [384, 1, 1]],
|
| 101 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 102 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 103 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 104 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 105 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 106 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 107 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 108 |
+
[-1, 1, Conv, [960, 1, 1]], # 88
|
| 109 |
+
[[-1, -11], 1, Shortcut, [1]], # 89
|
| 110 |
+
|
| 111 |
+
[-1, 1, DownC, [1280]], # 90-P6/64
|
| 112 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 113 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 114 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 115 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 116 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 117 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 118 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 119 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 120 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 121 |
+
[-1, 1, Conv, [1280, 1, 1]], # 100
|
| 122 |
+
[-11, 1, Conv, [512, 1, 1]],
|
| 123 |
+
[-12, 1, Conv, [512, 1, 1]],
|
| 124 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 125 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 126 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 127 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 128 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 129 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 130 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 131 |
+
[-1, 1, Conv, [1280, 1, 1]], # 110
|
| 132 |
+
[[-1, -11], 1, Shortcut, [1]], # 111
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
# yolov7 head
|
| 136 |
+
head:
|
| 137 |
+
[[-1, 1, SPPCSPC, [640]], # 112
|
| 138 |
+
|
| 139 |
+
[-1, 1, Conv, [480, 1, 1]],
|
| 140 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 141 |
+
[89, 1, Conv, [480, 1, 1]], # route backbone P5
|
| 142 |
+
[[-1, -2], 1, Concat, [1]],
|
| 143 |
+
|
| 144 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 145 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 146 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 147 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 148 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 149 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 150 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 151 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 152 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 153 |
+
[-1, 1, Conv, [480, 1, 1]], # 126
|
| 154 |
+
[-11, 1, Conv, [384, 1, 1]],
|
| 155 |
+
[-12, 1, Conv, [384, 1, 1]],
|
| 156 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 157 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 158 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 159 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 160 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 161 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 162 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 163 |
+
[-1, 1, Conv, [480, 1, 1]], # 136
|
| 164 |
+
[[-1, -11], 1, Shortcut, [1]], # 137
|
| 165 |
+
|
| 166 |
+
[-1, 1, Conv, [320, 1, 1]],
|
| 167 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 168 |
+
[67, 1, Conv, [320, 1, 1]], # route backbone P4
|
| 169 |
+
[[-1, -2], 1, Concat, [1]],
|
| 170 |
+
|
| 171 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 172 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 173 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 174 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 175 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 176 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 177 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 178 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 179 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 180 |
+
[-1, 1, Conv, [320, 1, 1]], # 151
|
| 181 |
+
[-11, 1, Conv, [256, 1, 1]],
|
| 182 |
+
[-12, 1, Conv, [256, 1, 1]],
|
| 183 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 184 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 185 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 186 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 187 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 188 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 189 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 190 |
+
[-1, 1, Conv, [320, 1, 1]], # 161
|
| 191 |
+
[[-1, -11], 1, Shortcut, [1]], # 162
|
| 192 |
+
|
| 193 |
+
[-1, 1, Conv, [160, 1, 1]],
|
| 194 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 195 |
+
[45, 1, Conv, [160, 1, 1]], # route backbone P3
|
| 196 |
+
[[-1, -2], 1, Concat, [1]],
|
| 197 |
+
|
| 198 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 199 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 200 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 201 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 202 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 203 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 204 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 205 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 206 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 207 |
+
[-1, 1, Conv, [160, 1, 1]], # 176
|
| 208 |
+
[-11, 1, Conv, [128, 1, 1]],
|
| 209 |
+
[-12, 1, Conv, [128, 1, 1]],
|
| 210 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 211 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 212 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 213 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 214 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 215 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 216 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 217 |
+
[-1, 1, Conv, [160, 1, 1]], # 186
|
| 218 |
+
[[-1, -11], 1, Shortcut, [1]], # 187
|
| 219 |
+
|
| 220 |
+
[-1, 1, DownC, [320]],
|
| 221 |
+
[[-1, 162], 1, Concat, [1]],
|
| 222 |
+
|
| 223 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 224 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 225 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 226 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 227 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 228 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 229 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 230 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 231 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 232 |
+
[-1, 1, Conv, [320, 1, 1]], # 199
|
| 233 |
+
[-11, 1, Conv, [256, 1, 1]],
|
| 234 |
+
[-12, 1, Conv, [256, 1, 1]],
|
| 235 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 236 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 237 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 238 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 239 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 240 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 241 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 242 |
+
[-1, 1, Conv, [320, 1, 1]], # 209
|
| 243 |
+
[[-1, -11], 1, Shortcut, [1]], # 210
|
| 244 |
+
|
| 245 |
+
[-1, 1, DownC, [480]],
|
| 246 |
+
[[-1, 137], 1, Concat, [1]],
|
| 247 |
+
|
| 248 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 249 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 250 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 251 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 252 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 253 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 254 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 255 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 256 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 257 |
+
[-1, 1, Conv, [480, 1, 1]], # 222
|
| 258 |
+
[-11, 1, Conv, [384, 1, 1]],
|
| 259 |
+
[-12, 1, Conv, [384, 1, 1]],
|
| 260 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 261 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 262 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 263 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 264 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 265 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 266 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 267 |
+
[-1, 1, Conv, [480, 1, 1]], # 232
|
| 268 |
+
[[-1, -11], 1, Shortcut, [1]], # 233
|
| 269 |
+
|
| 270 |
+
[-1, 1, DownC, [640]],
|
| 271 |
+
[[-1, 112], 1, Concat, [1]],
|
| 272 |
+
|
| 273 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 274 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 275 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 276 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 277 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 278 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 279 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 280 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 281 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 282 |
+
[-1, 1, Conv, [640, 1, 1]], # 245
|
| 283 |
+
[-11, 1, Conv, [512, 1, 1]],
|
| 284 |
+
[-12, 1, Conv, [512, 1, 1]],
|
| 285 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 286 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 287 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 288 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 289 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 290 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 291 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
| 292 |
+
[-1, 1, Conv, [640, 1, 1]], # 255
|
| 293 |
+
[[-1, -11], 1, Shortcut, [1]], # 256
|
| 294 |
+
|
| 295 |
+
[187, 1, Conv, [320, 3, 1]],
|
| 296 |
+
[210, 1, Conv, [640, 3, 1]],
|
| 297 |
+
[233, 1, Conv, [960, 3, 1]],
|
| 298 |
+
[256, 1, Conv, [1280, 3, 1]],
|
| 299 |
+
|
| 300 |
+
[186, 1, Conv, [320, 3, 1]],
|
| 301 |
+
[161, 1, Conv, [640, 3, 1]],
|
| 302 |
+
[136, 1, Conv, [960, 3, 1]],
|
| 303 |
+
[112, 1, Conv, [1280, 3, 1]],
|
| 304 |
+
|
| 305 |
+
[[257,258,259,260,261,262,263,264], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 306 |
+
]
|
cfg/training/yolov7-tiny.yaml
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
| 9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
| 10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
| 11 |
+
|
| 12 |
+
# yolov7-tiny backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
|
| 15 |
+
[[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2
|
| 16 |
+
|
| 17 |
+
[-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4
|
| 18 |
+
|
| 19 |
+
[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 20 |
+
[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 21 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 22 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 23 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 24 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7
|
| 25 |
+
|
| 26 |
+
[-1, 1, MP, []], # 8-P3/8
|
| 27 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 28 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 29 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 30 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 31 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 32 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14
|
| 33 |
+
|
| 34 |
+
[-1, 1, MP, []], # 15-P4/16
|
| 35 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 36 |
+
[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 37 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 38 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 39 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 40 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21
|
| 41 |
+
|
| 42 |
+
[-1, 1, MP, []], # 22-P5/32
|
| 43 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 44 |
+
[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 45 |
+
[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 46 |
+
[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 47 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 48 |
+
[-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
# yolov7-tiny head
|
| 52 |
+
head:
|
| 53 |
+
[[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 54 |
+
[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 55 |
+
[-1, 1, SP, [5]],
|
| 56 |
+
[-2, 1, SP, [9]],
|
| 57 |
+
[-3, 1, SP, [13]],
|
| 58 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 59 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 60 |
+
[[-1, -7], 1, Concat, [1]],
|
| 61 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37
|
| 62 |
+
|
| 63 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 64 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 65 |
+
[21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
|
| 66 |
+
[[-1, -2], 1, Concat, [1]],
|
| 67 |
+
|
| 68 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 69 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 70 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 71 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 72 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 73 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47
|
| 74 |
+
|
| 75 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 76 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 77 |
+
[14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
|
| 78 |
+
[[-1, -2], 1, Concat, [1]],
|
| 79 |
+
|
| 80 |
+
[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 81 |
+
[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 82 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 83 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 84 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 85 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57
|
| 86 |
+
|
| 87 |
+
[-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
|
| 88 |
+
[[-1, 47], 1, Concat, [1]],
|
| 89 |
+
|
| 90 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 91 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 92 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 93 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 94 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 95 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65
|
| 96 |
+
|
| 97 |
+
[-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
|
| 98 |
+
[[-1, 37], 1, Concat, [1]],
|
| 99 |
+
|
| 100 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 101 |
+
[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 102 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 103 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 104 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
| 105 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73
|
| 106 |
+
|
| 107 |
+
[57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 108 |
+
[65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 109 |
+
[73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
| 110 |
+
|
| 111 |
+
[[74,75,76], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 112 |
+
]
|
cfg/training/yolov7-w6.yaml
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
| 9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
| 10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
| 11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
| 12 |
+
|
| 13 |
+
# yolov7 backbone
|
| 14 |
+
backbone:
|
| 15 |
+
# [from, number, module, args]
|
| 16 |
+
[[-1, 1, ReOrg, []], # 0
|
| 17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
| 18 |
+
|
| 19 |
+
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
|
| 20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 27 |
+
[-1, 1, Conv, [128, 1, 1]], # 10
|
| 28 |
+
|
| 29 |
+
[-1, 1, Conv, [256, 3, 2]], # 11-P3/8
|
| 30 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 31 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 32 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 33 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 34 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 35 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 36 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 37 |
+
[-1, 1, Conv, [256, 1, 1]], # 19
|
| 38 |
+
|
| 39 |
+
[-1, 1, Conv, [512, 3, 2]], # 20-P4/16
|
| 40 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 41 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 42 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 43 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 44 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 45 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 46 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 47 |
+
[-1, 1, Conv, [512, 1, 1]], # 28
|
| 48 |
+
|
| 49 |
+
[-1, 1, Conv, [768, 3, 2]], # 29-P5/32
|
| 50 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 51 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 52 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 53 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 54 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 55 |
+
[-1, 1, Conv, [384, 3, 1]],
|
| 56 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 57 |
+
[-1, 1, Conv, [768, 1, 1]], # 37
|
| 58 |
+
|
| 59 |
+
[-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
|
| 60 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 61 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 62 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 63 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 64 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 65 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 66 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 67 |
+
[-1, 1, Conv, [1024, 1, 1]], # 46
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
# yolov7 head
|
| 71 |
+
head:
|
| 72 |
+
[[-1, 1, SPPCSPC, [512]], # 47
|
| 73 |
+
|
| 74 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 75 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 76 |
+
[37, 1, Conv, [384, 1, 1]], # route backbone P5
|
| 77 |
+
[[-1, -2], 1, Concat, [1]],
|
| 78 |
+
|
| 79 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 80 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 81 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 82 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 83 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 84 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 85 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 86 |
+
[-1, 1, Conv, [384, 1, 1]], # 59
|
| 87 |
+
|
| 88 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 89 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 90 |
+
[28, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 91 |
+
[[-1, -2], 1, Concat, [1]],
|
| 92 |
+
|
| 93 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 94 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 95 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 96 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 97 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 98 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 99 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 100 |
+
[-1, 1, Conv, [256, 1, 1]], # 71
|
| 101 |
+
|
| 102 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 103 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 104 |
+
[19, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 105 |
+
[[-1, -2], 1, Concat, [1]],
|
| 106 |
+
|
| 107 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 108 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 109 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 110 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 111 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 112 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 113 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 114 |
+
[-1, 1, Conv, [128, 1, 1]], # 83
|
| 115 |
+
|
| 116 |
+
[-1, 1, Conv, [256, 3, 2]],
|
| 117 |
+
[[-1, 71], 1, Concat, [1]], # cat
|
| 118 |
+
|
| 119 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 120 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 121 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 122 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 123 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 124 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 125 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 126 |
+
[-1, 1, Conv, [256, 1, 1]], # 93
|
| 127 |
+
|
| 128 |
+
[-1, 1, Conv, [384, 3, 2]],
|
| 129 |
+
[[-1, 59], 1, Concat, [1]], # cat
|
| 130 |
+
|
| 131 |
+
[-1, 1, Conv, [384, 1, 1]],
|
| 132 |
+
[-2, 1, Conv, [384, 1, 1]],
|
| 133 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 134 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 135 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 136 |
+
[-1, 1, Conv, [192, 3, 1]],
|
| 137 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 138 |
+
[-1, 1, Conv, [384, 1, 1]], # 103
|
| 139 |
+
|
| 140 |
+
[-1, 1, Conv, [512, 3, 2]],
|
| 141 |
+
[[-1, 47], 1, Concat, [1]], # cat
|
| 142 |
+
|
| 143 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 144 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 145 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 146 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 147 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 148 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 149 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 150 |
+
[-1, 1, Conv, [512, 1, 1]], # 113
|
| 151 |
+
|
| 152 |
+
[83, 1, Conv, [256, 3, 1]],
|
| 153 |
+
[93, 1, Conv, [512, 3, 1]],
|
| 154 |
+
[103, 1, Conv, [768, 3, 1]],
|
| 155 |
+
[113, 1, Conv, [1024, 3, 1]],
|
| 156 |
+
|
| 157 |
+
[83, 1, Conv, [320, 3, 1]],
|
| 158 |
+
[71, 1, Conv, [640, 3, 1]],
|
| 159 |
+
[59, 1, Conv, [960, 3, 1]],
|
| 160 |
+
[47, 1, Conv, [1280, 3, 1]],
|
| 161 |
+
|
| 162 |
+
[[114,115,116,117,118,119,120,121], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
| 163 |
+
]
|
cfg/training/yolov7.yaml
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
| 9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
| 10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
| 11 |
+
|
| 12 |
+
# yolov7 backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
| 16 |
+
|
| 17 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
| 18 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 19 |
+
|
| 20 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
| 21 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 27 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 28 |
+
[-1, 1, Conv, [256, 1, 1]], # 11
|
| 29 |
+
|
| 30 |
+
[-1, 1, MP, []],
|
| 31 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 32 |
+
[-3, 1, Conv, [128, 1, 1]],
|
| 33 |
+
[-1, 1, Conv, [128, 3, 2]],
|
| 34 |
+
[[-1, -3], 1, Concat, [1]], # 16-P3/8
|
| 35 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 36 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 41 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 42 |
+
[-1, 1, Conv, [512, 1, 1]], # 24
|
| 43 |
+
|
| 44 |
+
[-1, 1, MP, []],
|
| 45 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 46 |
+
[-3, 1, Conv, [256, 1, 1]],
|
| 47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
| 48 |
+
[[-1, -3], 1, Concat, [1]], # 29-P4/16
|
| 49 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 50 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 52 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 53 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 54 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 55 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 56 |
+
[-1, 1, Conv, [1024, 1, 1]], # 37
|
| 57 |
+
|
| 58 |
+
[-1, 1, MP, []],
|
| 59 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 60 |
+
[-3, 1, Conv, [512, 1, 1]],
|
| 61 |
+
[-1, 1, Conv, [512, 3, 2]],
|
| 62 |
+
[[-1, -3], 1, Concat, [1]], # 42-P5/32
|
| 63 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 64 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 65 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 66 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 67 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 68 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 69 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
| 70 |
+
[-1, 1, Conv, [1024, 1, 1]], # 50
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
# yolov7 head
|
| 74 |
+
head:
|
| 75 |
+
[[-1, 1, SPPCSPC, [512]], # 51
|
| 76 |
+
|
| 77 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 78 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 79 |
+
[37, 1, Conv, [256, 1, 1]], # route backbone P4
|
| 80 |
+
[[-1, -2], 1, Concat, [1]],
|
| 81 |
+
|
| 82 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 83 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 84 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 85 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 86 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 87 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 88 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 89 |
+
[-1, 1, Conv, [256, 1, 1]], # 63
|
| 90 |
+
|
| 91 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 92 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 93 |
+
[24, 1, Conv, [128, 1, 1]], # route backbone P3
|
| 94 |
+
[[-1, -2], 1, Concat, [1]],
|
| 95 |
+
|
| 96 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 97 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 98 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 99 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 100 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 101 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 102 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 103 |
+
[-1, 1, Conv, [128, 1, 1]], # 75
|
| 104 |
+
|
| 105 |
+
[-1, 1, MP, []],
|
| 106 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 107 |
+
[-3, 1, Conv, [128, 1, 1]],
|
| 108 |
+
[-1, 1, Conv, [128, 3, 2]],
|
| 109 |
+
[[-1, -3, 63], 1, Concat, [1]],
|
| 110 |
+
|
| 111 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 112 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 113 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 114 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 115 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 116 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 117 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 118 |
+
[-1, 1, Conv, [256, 1, 1]], # 88
|
| 119 |
+
|
| 120 |
+
[-1, 1, MP, []],
|
| 121 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 122 |
+
[-3, 1, Conv, [256, 1, 1]],
|
| 123 |
+
[-1, 1, Conv, [256, 3, 2]],
|
| 124 |
+
[[-1, -3, 51], 1, Concat, [1]],
|
| 125 |
+
|
| 126 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 127 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 128 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 129 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 130 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 131 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 132 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
| 133 |
+
[-1, 1, Conv, [512, 1, 1]], # 101
|
| 134 |
+
|
| 135 |
+
[75, 1, RepConv, [256, 3, 1]],
|
| 136 |
+
[88, 1, RepConv, [512, 3, 1]],
|
| 137 |
+
[101, 1, RepConv, [1024, 3, 1]],
|
| 138 |
+
|
| 139 |
+
[[102,103,104], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 140 |
+
]
|
cfg/training/yolov7x.yaml
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# parameters
|
| 2 |
+
nc: 80 # number of classes
|
| 3 |
+
depth_multiple: 1.0 # model depth multiple
|
| 4 |
+
width_multiple: 1.0 # layer channel multiple
|
| 5 |
+
|
| 6 |
+
# anchors
|
| 7 |
+
anchors:
|
| 8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
| 9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
| 10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
| 11 |
+
|
| 12 |
+
# yolov7 backbone
|
| 13 |
+
backbone:
|
| 14 |
+
# [from, number, module, args]
|
| 15 |
+
[[-1, 1, Conv, [40, 3, 1]], # 0
|
| 16 |
+
|
| 17 |
+
[-1, 1, Conv, [80, 3, 2]], # 1-P1/2
|
| 18 |
+
[-1, 1, Conv, [80, 3, 1]],
|
| 19 |
+
|
| 20 |
+
[-1, 1, Conv, [160, 3, 2]], # 3-P2/4
|
| 21 |
+
[-1, 1, Conv, [64, 1, 1]],
|
| 22 |
+
[-2, 1, Conv, [64, 1, 1]],
|
| 23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 28 |
+
[-1, 1, Conv, [64, 3, 1]],
|
| 29 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 30 |
+
[-1, 1, Conv, [320, 1, 1]], # 13
|
| 31 |
+
|
| 32 |
+
[-1, 1, MP, []],
|
| 33 |
+
[-1, 1, Conv, [160, 1, 1]],
|
| 34 |
+
[-3, 1, Conv, [160, 1, 1]],
|
| 35 |
+
[-1, 1, Conv, [160, 3, 2]],
|
| 36 |
+
[[-1, -3], 1, Concat, [1]], # 18-P3/8
|
| 37 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 38 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 41 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 42 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 43 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 44 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 45 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 46 |
+
[-1, 1, Conv, [640, 1, 1]], # 28
|
| 47 |
+
|
| 48 |
+
[-1, 1, MP, []],
|
| 49 |
+
[-1, 1, Conv, [320, 1, 1]],
|
| 50 |
+
[-3, 1, Conv, [320, 1, 1]],
|
| 51 |
+
[-1, 1, Conv, [320, 3, 2]],
|
| 52 |
+
[[-1, -3], 1, Concat, [1]], # 33-P4/16
|
| 53 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 54 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 55 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 56 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 57 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 58 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 59 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 60 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 61 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 62 |
+
[-1, 1, Conv, [1280, 1, 1]], # 43
|
| 63 |
+
|
| 64 |
+
[-1, 1, MP, []],
|
| 65 |
+
[-1, 1, Conv, [640, 1, 1]],
|
| 66 |
+
[-3, 1, Conv, [640, 1, 1]],
|
| 67 |
+
[-1, 1, Conv, [640, 3, 2]],
|
| 68 |
+
[[-1, -3], 1, Concat, [1]], # 48-P5/32
|
| 69 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 70 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 71 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 72 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 73 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 74 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 75 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 76 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 77 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 78 |
+
[-1, 1, Conv, [1280, 1, 1]], # 58
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
# yolov7 head
|
| 82 |
+
head:
|
| 83 |
+
[[-1, 1, SPPCSPC, [640]], # 59
|
| 84 |
+
|
| 85 |
+
[-1, 1, Conv, [320, 1, 1]],
|
| 86 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 87 |
+
[43, 1, Conv, [320, 1, 1]], # route backbone P4
|
| 88 |
+
[[-1, -2], 1, Concat, [1]],
|
| 89 |
+
|
| 90 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 91 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 92 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 93 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 94 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 95 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 96 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 97 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 98 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 99 |
+
[-1, 1, Conv, [320, 1, 1]], # 73
|
| 100 |
+
|
| 101 |
+
[-1, 1, Conv, [160, 1, 1]],
|
| 102 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
| 103 |
+
[28, 1, Conv, [160, 1, 1]], # route backbone P3
|
| 104 |
+
[[-1, -2], 1, Concat, [1]],
|
| 105 |
+
|
| 106 |
+
[-1, 1, Conv, [128, 1, 1]],
|
| 107 |
+
[-2, 1, Conv, [128, 1, 1]],
|
| 108 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 109 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 110 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 111 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 112 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 113 |
+
[-1, 1, Conv, [128, 3, 1]],
|
| 114 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 115 |
+
[-1, 1, Conv, [160, 1, 1]], # 87
|
| 116 |
+
|
| 117 |
+
[-1, 1, MP, []],
|
| 118 |
+
[-1, 1, Conv, [160, 1, 1]],
|
| 119 |
+
[-3, 1, Conv, [160, 1, 1]],
|
| 120 |
+
[-1, 1, Conv, [160, 3, 2]],
|
| 121 |
+
[[-1, -3, 73], 1, Concat, [1]],
|
| 122 |
+
|
| 123 |
+
[-1, 1, Conv, [256, 1, 1]],
|
| 124 |
+
[-2, 1, Conv, [256, 1, 1]],
|
| 125 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 126 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 127 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 128 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 129 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 130 |
+
[-1, 1, Conv, [256, 3, 1]],
|
| 131 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 132 |
+
[-1, 1, Conv, [320, 1, 1]], # 102
|
| 133 |
+
|
| 134 |
+
[-1, 1, MP, []],
|
| 135 |
+
[-1, 1, Conv, [320, 1, 1]],
|
| 136 |
+
[-3, 1, Conv, [320, 1, 1]],
|
| 137 |
+
[-1, 1, Conv, [320, 3, 2]],
|
| 138 |
+
[[-1, -3, 59], 1, Concat, [1]],
|
| 139 |
+
|
| 140 |
+
[-1, 1, Conv, [512, 1, 1]],
|
| 141 |
+
[-2, 1, Conv, [512, 1, 1]],
|
| 142 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 143 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 144 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 145 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 146 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 147 |
+
[-1, 1, Conv, [512, 3, 1]],
|
| 148 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
| 149 |
+
[-1, 1, Conv, [640, 1, 1]], # 117
|
| 150 |
+
|
| 151 |
+
[87, 1, Conv, [320, 3, 1]],
|
| 152 |
+
[102, 1, Conv, [640, 3, 1]],
|
| 153 |
+
[117, 1, Conv, [1280, 3, 1]],
|
| 154 |
+
|
| 155 |
+
[[118,119,120], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
| 156 |
+
]
|
data/coco.yaml
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# COCO 2017 dataset http://cocodataset.org
|
| 2 |
+
|
| 3 |
+
# download command/URL (optional)
|
| 4 |
+
download: bash ./scripts/get_coco.sh
|
| 5 |
+
|
| 6 |
+
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
|
| 7 |
+
train: ./coco/train2017.txt # 118287 images
|
| 8 |
+
val: ./coco/val2017.txt # 5000 images
|
| 9 |
+
test: ./coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
| 10 |
+
|
| 11 |
+
# number of classes
|
| 12 |
+
nc: 80
|
| 13 |
+
|
| 14 |
+
# class names
|
| 15 |
+
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
| 16 |
+
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
| 17 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
| 18 |
+
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
| 19 |
+
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
| 20 |
+
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
| 21 |
+
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
| 22 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
| 23 |
+
'hair drier', 'toothbrush' ]
|
data/hyp.scratch.custom.yaml
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
| 2 |
+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
| 3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
| 4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
| 5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
| 6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
| 7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
| 8 |
+
box: 0.05 # box loss gain
|
| 9 |
+
cls: 0.3 # cls loss gain
|
| 10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
| 11 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
| 12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
| 13 |
+
iou_t: 0.20 # IoU training threshold
|
| 14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
| 15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
| 16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
| 17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
| 18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
| 19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
| 20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
| 21 |
+
translate: 0.2 # image translation (+/- fraction)
|
| 22 |
+
scale: 0.5 # image scale (+/- gain)
|
| 23 |
+
shear: 0.0 # image shear (+/- deg)
|
| 24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
| 25 |
+
flipud: 0.0 # image flip up-down (probability)
|
| 26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
| 27 |
+
mosaic: 1.0 # image mosaic (probability)
|
| 28 |
+
mixup: 0.0 # image mixup (probability)
|
| 29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
| 30 |
+
paste_in: 0.0 # image copy paste (probability), use 0 for faster training
|
| 31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|
data/hyp.scratch.p5.yaml
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
| 2 |
+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
| 3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
| 4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
| 5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
| 6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
| 7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
| 8 |
+
box: 0.05 # box loss gain
|
| 9 |
+
cls: 0.3 # cls loss gain
|
| 10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
| 11 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
| 12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
| 13 |
+
iou_t: 0.20 # IoU training threshold
|
| 14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
| 15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
| 16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
| 17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
| 18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
| 19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
| 20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
| 21 |
+
translate: 0.2 # image translation (+/- fraction)
|
| 22 |
+
scale: 0.9 # image scale (+/- gain)
|
| 23 |
+
shear: 0.0 # image shear (+/- deg)
|
| 24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
| 25 |
+
flipud: 0.0 # image flip up-down (probability)
|
| 26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
| 27 |
+
mosaic: 1.0 # image mosaic (probability)
|
| 28 |
+
mixup: 0.15 # image mixup (probability)
|
| 29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
| 30 |
+
paste_in: 0.15 # image copy paste (probability), use 0 for faster training
|
| 31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|
data/hyp.scratch.p6.yaml
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
| 2 |
+
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
|
| 3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
| 4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
| 5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
| 6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
| 7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
| 8 |
+
box: 0.05 # box loss gain
|
| 9 |
+
cls: 0.3 # cls loss gain
|
| 10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
| 11 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
| 12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
| 13 |
+
iou_t: 0.20 # IoU training threshold
|
| 14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
| 15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
| 16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
| 17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
| 18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
| 19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
| 20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
| 21 |
+
translate: 0.2 # image translation (+/- fraction)
|
| 22 |
+
scale: 0.9 # image scale (+/- gain)
|
| 23 |
+
shear: 0.0 # image shear (+/- deg)
|
| 24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
| 25 |
+
flipud: 0.0 # image flip up-down (probability)
|
| 26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
| 27 |
+
mosaic: 1.0 # image mosaic (probability)
|
| 28 |
+
mixup: 0.15 # image mixup (probability)
|
| 29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
| 30 |
+
paste_in: 0.15 # image copy paste (probability), use 0 for faster training
|
| 31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|
data/hyp.scratch.tiny.yaml
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
| 2 |
+
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
| 3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
| 4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
| 5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
| 6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
| 7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
| 8 |
+
box: 0.05 # box loss gain
|
| 9 |
+
cls: 0.5 # cls loss gain
|
| 10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
| 11 |
+
obj: 1.0 # obj loss gain (scale with pixels)
|
| 12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
| 13 |
+
iou_t: 0.20 # IoU training threshold
|
| 14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
| 15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
| 16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
| 17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
| 18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
| 19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
| 20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
| 21 |
+
translate: 0.1 # image translation (+/- fraction)
|
| 22 |
+
scale: 0.5 # image scale (+/- gain)
|
| 23 |
+
shear: 0.0 # image shear (+/- deg)
|
| 24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
| 25 |
+
flipud: 0.0 # image flip up-down (probability)
|
| 26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
| 27 |
+
mosaic: 1.0 # image mosaic (probability)
|
| 28 |
+
mixup: 0.05 # image mixup (probability)
|
| 29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
| 30 |
+
paste_in: 0.05 # image copy paste (probability), use 0 for faster training
|
| 31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|
deploy/triton-inference-server/README.md
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# YOLOv7 on Triton Inference Server
|
| 2 |
+
|
| 3 |
+
Instructions to deploy YOLOv7 as TensorRT engine to [Triton Inference Server](https://github.com/NVIDIA/triton-inference-server).
|
| 4 |
+
|
| 5 |
+
Triton Inference Server takes care of model deployment with many out-of-the-box benefits, like a GRPC and HTTP interface, automatic scheduling on multiple GPUs, shared memory (even on GPU), dynamic server-side batching, health metrics and memory resource management.
|
| 6 |
+
|
| 7 |
+
There are no additional dependencies needed to run this deployment, except a working docker daemon with GPU support.
|
| 8 |
+
|
| 9 |
+
## Export TensorRT
|
| 10 |
+
|
| 11 |
+
See https://github.com/WongKinYiu/yolov7#export for more info.
|
| 12 |
+
|
| 13 |
+
```bash
|
| 14 |
+
#install onnx-simplifier not listed in general yolov7 requirements.txt
|
| 15 |
+
pip3 install onnx-simplifier
|
| 16 |
+
|
| 17 |
+
# Pytorch Yolov7 -> ONNX with grid, EfficientNMS plugin and dynamic batch size
|
| 18 |
+
python export.py --weights ./yolov7.pt --grid --end2end --dynamic-batch --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640
|
| 19 |
+
# ONNX -> TensorRT with trtexec and docker
|
| 20 |
+
docker run -it --rm --gpus=all nvcr.io/nvidia/tensorrt:22.06-py3
|
| 21 |
+
# Copy onnx -> container: docker cp yolov7.onnx <container-id>:/workspace/
|
| 22 |
+
# Export with FP16 precision, min batch 1, opt batch 8 and max batch 8
|
| 23 |
+
./tensorrt/bin/trtexec --onnx=yolov7.onnx --minShapes=images:1x3x640x640 --optShapes=images:8x3x640x640 --maxShapes=images:8x3x640x640 --fp16 --workspace=4096 --saveEngine=yolov7-fp16-1x8x8.engine --timingCacheFile=timing.cache
|
| 24 |
+
# Test engine
|
| 25 |
+
./tensorrt/bin/trtexec --loadEngine=yolov7-fp16-1x8x8.engine
|
| 26 |
+
# Copy engine -> host: docker cp <container-id>:/workspace/yolov7-fp16-1x8x8.engine .
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
Example output of test with RTX 3090.
|
| 30 |
+
|
| 31 |
+
```
|
| 32 |
+
[I] === Performance summary ===
|
| 33 |
+
[I] Throughput: 73.4985 qps
|
| 34 |
+
[I] Latency: min = 14.8578 ms, max = 15.8344 ms, mean = 15.07 ms, median = 15.0422 ms, percentile(99%) = 15.7443 ms
|
| 35 |
+
[I] End-to-End Host Latency: min = 25.8715 ms, max = 28.4102 ms, mean = 26.672 ms, median = 26.6082 ms, percentile(99%) = 27.8314 ms
|
| 36 |
+
[I] Enqueue Time: min = 0.793701 ms, max = 1.47144 ms, mean = 1.2008 ms, median = 1.28644 ms, percentile(99%) = 1.38965 ms
|
| 37 |
+
[I] H2D Latency: min = 1.50073 ms, max = 1.52454 ms, mean = 1.51225 ms, median = 1.51404 ms, percentile(99%) = 1.51941 ms
|
| 38 |
+
[I] GPU Compute Time: min = 13.3386 ms, max = 14.3186 ms, mean = 13.5448 ms, median = 13.5178 ms, percentile(99%) = 14.2151 ms
|
| 39 |
+
[I] D2H Latency: min = 0.00878906 ms, max = 0.0172729 ms, mean = 0.0128844 ms, median = 0.0125732 ms, percentile(99%) = 0.0166016 ms
|
| 40 |
+
[I] Total Host Walltime: 3.04768 s
|
| 41 |
+
[I] Total GPU Compute Time: 3.03404 s
|
| 42 |
+
[I] Explanations of the performance metrics are printed in the verbose logs.
|
| 43 |
+
```
|
| 44 |
+
Note: 73.5 qps x batch 8 = 588 fps @ ~15ms latency.
|
| 45 |
+
|
| 46 |
+
## Model Repository
|
| 47 |
+
|
| 48 |
+
See [Triton Model Repository Documentation](https://github.com/triton-inference-server/server/blob/main/docs/model_repository.md#model-repository) for more info.
|
| 49 |
+
|
| 50 |
+
```bash
|
| 51 |
+
# Create folder structure
|
| 52 |
+
mkdir -p triton-deploy/models/yolov7/1/
|
| 53 |
+
touch triton-deploy/models/yolov7/config.pbtxt
|
| 54 |
+
# Place model
|
| 55 |
+
mv yolov7-fp16-1x8x8.engine triton-deploy/models/yolov7/1/model.plan
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
## Model Configuration
|
| 59 |
+
|
| 60 |
+
See [Triton Model Configuration Documentation](https://github.com/triton-inference-server/server/blob/main/docs/model_configuration.md#model-configuration) for more info.
|
| 61 |
+
|
| 62 |
+
Minimal configuration for `triton-deploy/models/yolov7/config.pbtxt`:
|
| 63 |
+
|
| 64 |
+
```
|
| 65 |
+
name: "yolov7"
|
| 66 |
+
platform: "tensorrt_plan"
|
| 67 |
+
max_batch_size: 8
|
| 68 |
+
dynamic_batching { }
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
Example repository:
|
| 72 |
+
|
| 73 |
+
```bash
|
| 74 |
+
$ tree triton-deploy/
|
| 75 |
+
triton-deploy/
|
| 76 |
+
└── models
|
| 77 |
+
└── yolov7
|
| 78 |
+
├── 1
|
| 79 |
+
│ └── model.plan
|
| 80 |
+
└── config.pbtxt
|
| 81 |
+
|
| 82 |
+
3 directories, 2 files
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
## Start Triton Inference Server
|
| 86 |
+
|
| 87 |
+
```
|
| 88 |
+
docker run --gpus all --rm --ipc=host --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 -p8000:8000 -p8001:8001 -p8002:8002 -v$(pwd)/triton-deploy/models:/models nvcr.io/nvidia/tritonserver:22.06-py3 tritonserver --model-repository=/models --strict-model-config=false --log-verbose 1
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
In the log you should see:
|
| 92 |
+
|
| 93 |
+
```
|
| 94 |
+
+--------+---------+--------+
|
| 95 |
+
| Model | Version | Status |
|
| 96 |
+
+--------+---------+--------+
|
| 97 |
+
| yolov7 | 1 | READY |
|
| 98 |
+
+--------+---------+--------+
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
## Performance with Model Analyzer
|
| 102 |
+
|
| 103 |
+
See [Triton Model Analyzer Documentation](https://github.com/triton-inference-server/server/blob/main/docs/model_analyzer.md#model-analyzer) for more info.
|
| 104 |
+
|
| 105 |
+
Performance numbers @ RTX 3090 + AMD Ryzen 9 5950X
|
| 106 |
+
|
| 107 |
+
Example test for 16 concurrent clients using shared memory, each with batch size 1 requests:
|
| 108 |
+
|
| 109 |
+
```bash
|
| 110 |
+
docker run -it --ipc=host --net=host nvcr.io/nvidia/tritonserver:22.06-py3-sdk /bin/bash
|
| 111 |
+
|
| 112 |
+
./install/bin/perf_analyzer -m yolov7 -u 127.0.0.1:8001 -i grpc --shared-memory system --concurrency-range 16
|
| 113 |
+
|
| 114 |
+
# Result (truncated)
|
| 115 |
+
Concurrency: 16, throughput: 590.119 infer/sec, latency 27080 usec
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
Throughput for 16 clients with batch size 1 is the same as for a single thread running the engine at 16 batch size locally thanks to Triton [Dynamic Batching Strategy](https://github.com/triton-inference-server/server/blob/main/docs/model_configuration.md#dynamic-batcher). Result without dynamic batching (disable in model configuration) considerably worse:
|
| 119 |
+
|
| 120 |
+
```bash
|
| 121 |
+
# Result (truncated)
|
| 122 |
+
Concurrency: 16, throughput: 335.587 infer/sec, latency 47616 usec
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
## How to run model in your code
|
| 126 |
+
|
| 127 |
+
Example client can be found in client.py. It can run dummy input, images and videos.
|
| 128 |
+
|
| 129 |
+
```bash
|
| 130 |
+
pip3 install tritonclient[all] opencv-python
|
| 131 |
+
python3 client.py image data/dog.jpg
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+

|
| 135 |
+
|
| 136 |
+
```
|
| 137 |
+
$ python3 client.py --help
|
| 138 |
+
usage: client.py [-h] [-m MODEL] [--width WIDTH] [--height HEIGHT] [-u URL] [-o OUT] [-f FPS] [-i] [-v] [-t CLIENT_TIMEOUT] [-s] [-r ROOT_CERTIFICATES] [-p PRIVATE_KEY] [-x CERTIFICATE_CHAIN] {dummy,image,video} [input]
|
| 139 |
+
|
| 140 |
+
positional arguments:
|
| 141 |
+
{dummy,image,video} Run mode. 'dummy' will send an emtpy buffer to the server to test if inference works. 'image' will process an image. 'video' will process a video.
|
| 142 |
+
input Input file to load from in image or video mode
|
| 143 |
+
|
| 144 |
+
optional arguments:
|
| 145 |
+
-h, --help show this help message and exit
|
| 146 |
+
-m MODEL, --model MODEL
|
| 147 |
+
Inference model name, default yolov7
|
| 148 |
+
--width WIDTH Inference model input width, default 640
|
| 149 |
+
--height HEIGHT Inference model input height, default 640
|
| 150 |
+
-u URL, --url URL Inference server URL, default localhost:8001
|
| 151 |
+
-o OUT, --out OUT Write output into file instead of displaying it
|
| 152 |
+
-f FPS, --fps FPS Video output fps, default 24.0 FPS
|
| 153 |
+
-i, --model-info Print model status, configuration and statistics
|
| 154 |
+
-v, --verbose Enable verbose client output
|
| 155 |
+
-t CLIENT_TIMEOUT, --client-timeout CLIENT_TIMEOUT
|
| 156 |
+
Client timeout in seconds, default no timeout
|
| 157 |
+
-s, --ssl Enable SSL encrypted channel to the server
|
| 158 |
+
-r ROOT_CERTIFICATES, --root-certificates ROOT_CERTIFICATES
|
| 159 |
+
File holding PEM-encoded root certificates, default none
|
| 160 |
+
-p PRIVATE_KEY, --private-key PRIVATE_KEY
|
| 161 |
+
File holding PEM-encoded private key, default is none
|
| 162 |
+
-x CERTIFICATE_CHAIN, --certificate-chain CERTIFICATE_CHAIN
|
| 163 |
+
File holding PEM-encoded certicate chain default is none
|
| 164 |
+
```
|
deploy/triton-inference-server/boundingbox.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class BoundingBox:
|
| 2 |
+
def __init__(self, classID, confidence, x1, x2, y1, y2, image_width, image_height):
|
| 3 |
+
self.classID = classID
|
| 4 |
+
self.confidence = confidence
|
| 5 |
+
self.x1 = x1
|
| 6 |
+
self.x2 = x2
|
| 7 |
+
self.y1 = y1
|
| 8 |
+
self.y2 = y2
|
| 9 |
+
self.u1 = x1 / image_width
|
| 10 |
+
self.u2 = x2 / image_width
|
| 11 |
+
self.v1 = y1 / image_height
|
| 12 |
+
self.v2 = y2 / image_height
|
| 13 |
+
|
| 14 |
+
def box(self):
|
| 15 |
+
return (self.x1, self.y1, self.x2, self.y2)
|
| 16 |
+
|
| 17 |
+
def width(self):
|
| 18 |
+
return self.x2 - self.x1
|
| 19 |
+
|
| 20 |
+
def height(self):
|
| 21 |
+
return self.y2 - self.y1
|
| 22 |
+
|
| 23 |
+
def center_absolute(self):
|
| 24 |
+
return (0.5 * (self.x1 + self.x2), 0.5 * (self.y1 + self.y2))
|
| 25 |
+
|
| 26 |
+
def center_normalized(self):
|
| 27 |
+
return (0.5 * (self.u1 + self.u2), 0.5 * (self.v1 + self.v2))
|
| 28 |
+
|
| 29 |
+
def size_absolute(self):
|
| 30 |
+
return (self.x2 - self.x1, self.y2 - self.y1)
|
| 31 |
+
|
| 32 |
+
def size_normalized(self):
|
| 33 |
+
return (self.u2 - self.u1, self.v2 - self.v1)
|
deploy/triton-inference-server/client.py
ADDED
|
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
import argparse
|
| 4 |
+
import numpy as np
|
| 5 |
+
import sys
|
| 6 |
+
import cv2
|
| 7 |
+
|
| 8 |
+
import tritonclient.grpc as grpcclient
|
| 9 |
+
from tritonclient.utils import InferenceServerException
|
| 10 |
+
|
| 11 |
+
from processing import preprocess, postprocess
|
| 12 |
+
from render import render_box, render_filled_box, get_text_size, render_text, RAND_COLORS
|
| 13 |
+
from labels import COCOLabels
|
| 14 |
+
|
| 15 |
+
INPUT_NAMES = ["images"]
|
| 16 |
+
OUTPUT_NAMES = ["num_dets", "det_boxes", "det_scores", "det_classes"]
|
| 17 |
+
|
| 18 |
+
if __name__ == '__main__':
|
| 19 |
+
parser = argparse.ArgumentParser()
|
| 20 |
+
parser.add_argument('mode',
|
| 21 |
+
choices=['dummy', 'image', 'video'],
|
| 22 |
+
default='dummy',
|
| 23 |
+
help='Run mode. \'dummy\' will send an emtpy buffer to the server to test if inference works. \'image\' will process an image. \'video\' will process a video.')
|
| 24 |
+
parser.add_argument('input',
|
| 25 |
+
type=str,
|
| 26 |
+
nargs='?',
|
| 27 |
+
help='Input file to load from in image or video mode')
|
| 28 |
+
parser.add_argument('-m',
|
| 29 |
+
'--model',
|
| 30 |
+
type=str,
|
| 31 |
+
required=False,
|
| 32 |
+
default='yolov7',
|
| 33 |
+
help='Inference model name, default yolov7')
|
| 34 |
+
parser.add_argument('--width',
|
| 35 |
+
type=int,
|
| 36 |
+
required=False,
|
| 37 |
+
default=640,
|
| 38 |
+
help='Inference model input width, default 640')
|
| 39 |
+
parser.add_argument('--height',
|
| 40 |
+
type=int,
|
| 41 |
+
required=False,
|
| 42 |
+
default=640,
|
| 43 |
+
help='Inference model input height, default 640')
|
| 44 |
+
parser.add_argument('-u',
|
| 45 |
+
'--url',
|
| 46 |
+
type=str,
|
| 47 |
+
required=False,
|
| 48 |
+
default='localhost:8001',
|
| 49 |
+
help='Inference server URL, default localhost:8001')
|
| 50 |
+
parser.add_argument('-o',
|
| 51 |
+
'--out',
|
| 52 |
+
type=str,
|
| 53 |
+
required=False,
|
| 54 |
+
default='',
|
| 55 |
+
help='Write output into file instead of displaying it')
|
| 56 |
+
parser.add_argument('-f',
|
| 57 |
+
'--fps',
|
| 58 |
+
type=float,
|
| 59 |
+
required=False,
|
| 60 |
+
default=24.0,
|
| 61 |
+
help='Video output fps, default 24.0 FPS')
|
| 62 |
+
parser.add_argument('-i',
|
| 63 |
+
'--model-info',
|
| 64 |
+
action="store_true",
|
| 65 |
+
required=False,
|
| 66 |
+
default=False,
|
| 67 |
+
help='Print model status, configuration and statistics')
|
| 68 |
+
parser.add_argument('-v',
|
| 69 |
+
'--verbose',
|
| 70 |
+
action="store_true",
|
| 71 |
+
required=False,
|
| 72 |
+
default=False,
|
| 73 |
+
help='Enable verbose client output')
|
| 74 |
+
parser.add_argument('-t',
|
| 75 |
+
'--client-timeout',
|
| 76 |
+
type=float,
|
| 77 |
+
required=False,
|
| 78 |
+
default=None,
|
| 79 |
+
help='Client timeout in seconds, default no timeout')
|
| 80 |
+
parser.add_argument('-s',
|
| 81 |
+
'--ssl',
|
| 82 |
+
action="store_true",
|
| 83 |
+
required=False,
|
| 84 |
+
default=False,
|
| 85 |
+
help='Enable SSL encrypted channel to the server')
|
| 86 |
+
parser.add_argument('-r',
|
| 87 |
+
'--root-certificates',
|
| 88 |
+
type=str,
|
| 89 |
+
required=False,
|
| 90 |
+
default=None,
|
| 91 |
+
help='File holding PEM-encoded root certificates, default none')
|
| 92 |
+
parser.add_argument('-p',
|
| 93 |
+
'--private-key',
|
| 94 |
+
type=str,
|
| 95 |
+
required=False,
|
| 96 |
+
default=None,
|
| 97 |
+
help='File holding PEM-encoded private key, default is none')
|
| 98 |
+
parser.add_argument('-x',
|
| 99 |
+
'--certificate-chain',
|
| 100 |
+
type=str,
|
| 101 |
+
required=False,
|
| 102 |
+
default=None,
|
| 103 |
+
help='File holding PEM-encoded certicate chain default is none')
|
| 104 |
+
|
| 105 |
+
FLAGS = parser.parse_args()
|
| 106 |
+
|
| 107 |
+
# Create server context
|
| 108 |
+
try:
|
| 109 |
+
triton_client = grpcclient.InferenceServerClient(
|
| 110 |
+
url=FLAGS.url,
|
| 111 |
+
verbose=FLAGS.verbose,
|
| 112 |
+
ssl=FLAGS.ssl,
|
| 113 |
+
root_certificates=FLAGS.root_certificates,
|
| 114 |
+
private_key=FLAGS.private_key,
|
| 115 |
+
certificate_chain=FLAGS.certificate_chain)
|
| 116 |
+
except Exception as e:
|
| 117 |
+
print("context creation failed: " + str(e))
|
| 118 |
+
sys.exit()
|
| 119 |
+
|
| 120 |
+
# Health check
|
| 121 |
+
if not triton_client.is_server_live():
|
| 122 |
+
print("FAILED : is_server_live")
|
| 123 |
+
sys.exit(1)
|
| 124 |
+
|
| 125 |
+
if not triton_client.is_server_ready():
|
| 126 |
+
print("FAILED : is_server_ready")
|
| 127 |
+
sys.exit(1)
|
| 128 |
+
|
| 129 |
+
if not triton_client.is_model_ready(FLAGS.model):
|
| 130 |
+
print("FAILED : is_model_ready")
|
| 131 |
+
sys.exit(1)
|
| 132 |
+
|
| 133 |
+
if FLAGS.model_info:
|
| 134 |
+
# Model metadata
|
| 135 |
+
try:
|
| 136 |
+
metadata = triton_client.get_model_metadata(FLAGS.model)
|
| 137 |
+
print(metadata)
|
| 138 |
+
except InferenceServerException as ex:
|
| 139 |
+
if "Request for unknown model" not in ex.message():
|
| 140 |
+
print("FAILED : get_model_metadata")
|
| 141 |
+
print("Got: {}".format(ex.message()))
|
| 142 |
+
sys.exit(1)
|
| 143 |
+
else:
|
| 144 |
+
print("FAILED : get_model_metadata")
|
| 145 |
+
sys.exit(1)
|
| 146 |
+
|
| 147 |
+
# Model configuration
|
| 148 |
+
try:
|
| 149 |
+
config = triton_client.get_model_config(FLAGS.model)
|
| 150 |
+
if not (config.config.name == FLAGS.model):
|
| 151 |
+
print("FAILED: get_model_config")
|
| 152 |
+
sys.exit(1)
|
| 153 |
+
print(config)
|
| 154 |
+
except InferenceServerException as ex:
|
| 155 |
+
print("FAILED : get_model_config")
|
| 156 |
+
print("Got: {}".format(ex.message()))
|
| 157 |
+
sys.exit(1)
|
| 158 |
+
|
| 159 |
+
# DUMMY MODE
|
| 160 |
+
if FLAGS.mode == 'dummy':
|
| 161 |
+
print("Running in 'dummy' mode")
|
| 162 |
+
print("Creating emtpy buffer filled with ones...")
|
| 163 |
+
inputs = []
|
| 164 |
+
outputs = []
|
| 165 |
+
inputs.append(grpcclient.InferInput(INPUT_NAMES[0], [1, 3, FLAGS.width, FLAGS.height], "FP32"))
|
| 166 |
+
inputs[0].set_data_from_numpy(np.ones(shape=(1, 3, FLAGS.width, FLAGS.height), dtype=np.float32))
|
| 167 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[0]))
|
| 168 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[1]))
|
| 169 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[2]))
|
| 170 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[3]))
|
| 171 |
+
|
| 172 |
+
print("Invoking inference...")
|
| 173 |
+
results = triton_client.infer(model_name=FLAGS.model,
|
| 174 |
+
inputs=inputs,
|
| 175 |
+
outputs=outputs,
|
| 176 |
+
client_timeout=FLAGS.client_timeout)
|
| 177 |
+
if FLAGS.model_info:
|
| 178 |
+
statistics = triton_client.get_inference_statistics(model_name=FLAGS.model)
|
| 179 |
+
if len(statistics.model_stats) != 1:
|
| 180 |
+
print("FAILED: get_inference_statistics")
|
| 181 |
+
sys.exit(1)
|
| 182 |
+
print(statistics)
|
| 183 |
+
print("Done")
|
| 184 |
+
|
| 185 |
+
for output in OUTPUT_NAMES:
|
| 186 |
+
result = results.as_numpy(output)
|
| 187 |
+
print(f"Received result buffer \"{output}\" of size {result.shape}")
|
| 188 |
+
print(f"Naive buffer sum: {np.sum(result)}")
|
| 189 |
+
|
| 190 |
+
# IMAGE MODE
|
| 191 |
+
if FLAGS.mode == 'image':
|
| 192 |
+
print("Running in 'image' mode")
|
| 193 |
+
if not FLAGS.input:
|
| 194 |
+
print("FAILED: no input image")
|
| 195 |
+
sys.exit(1)
|
| 196 |
+
|
| 197 |
+
inputs = []
|
| 198 |
+
outputs = []
|
| 199 |
+
inputs.append(grpcclient.InferInput(INPUT_NAMES[0], [1, 3, FLAGS.width, FLAGS.height], "FP32"))
|
| 200 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[0]))
|
| 201 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[1]))
|
| 202 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[2]))
|
| 203 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[3]))
|
| 204 |
+
|
| 205 |
+
print("Creating buffer from image file...")
|
| 206 |
+
input_image = cv2.imread(str(FLAGS.input))
|
| 207 |
+
if input_image is None:
|
| 208 |
+
print(f"FAILED: could not load input image {str(FLAGS.input)}")
|
| 209 |
+
sys.exit(1)
|
| 210 |
+
input_image_buffer = preprocess(input_image, [FLAGS.width, FLAGS.height])
|
| 211 |
+
input_image_buffer = np.expand_dims(input_image_buffer, axis=0)
|
| 212 |
+
|
| 213 |
+
inputs[0].set_data_from_numpy(input_image_buffer)
|
| 214 |
+
|
| 215 |
+
print("Invoking inference...")
|
| 216 |
+
results = triton_client.infer(model_name=FLAGS.model,
|
| 217 |
+
inputs=inputs,
|
| 218 |
+
outputs=outputs,
|
| 219 |
+
client_timeout=FLAGS.client_timeout)
|
| 220 |
+
if FLAGS.model_info:
|
| 221 |
+
statistics = triton_client.get_inference_statistics(model_name=FLAGS.model)
|
| 222 |
+
if len(statistics.model_stats) != 1:
|
| 223 |
+
print("FAILED: get_inference_statistics")
|
| 224 |
+
sys.exit(1)
|
| 225 |
+
print(statistics)
|
| 226 |
+
print("Done")
|
| 227 |
+
|
| 228 |
+
for output in OUTPUT_NAMES:
|
| 229 |
+
result = results.as_numpy(output)
|
| 230 |
+
print(f"Received result buffer \"{output}\" of size {result.shape}")
|
| 231 |
+
print(f"Naive buffer sum: {np.sum(result)}")
|
| 232 |
+
|
| 233 |
+
num_dets = results.as_numpy(OUTPUT_NAMES[0])
|
| 234 |
+
det_boxes = results.as_numpy(OUTPUT_NAMES[1])
|
| 235 |
+
det_scores = results.as_numpy(OUTPUT_NAMES[2])
|
| 236 |
+
det_classes = results.as_numpy(OUTPUT_NAMES[3])
|
| 237 |
+
detected_objects = postprocess(num_dets, det_boxes, det_scores, det_classes, input_image.shape[1], input_image.shape[0], [FLAGS.width, FLAGS.height])
|
| 238 |
+
print(f"Detected objects: {len(detected_objects)}")
|
| 239 |
+
|
| 240 |
+
for box in detected_objects:
|
| 241 |
+
print(f"{COCOLabels(box.classID).name}: {box.confidence}")
|
| 242 |
+
input_image = render_box(input_image, box.box(), color=tuple(RAND_COLORS[box.classID % 64].tolist()))
|
| 243 |
+
size = get_text_size(input_image, f"{COCOLabels(box.classID).name}: {box.confidence:.2f}", normalised_scaling=0.6)
|
| 244 |
+
input_image = render_filled_box(input_image, (box.x1 - 3, box.y1 - 3, box.x1 + size[0], box.y1 + size[1]), color=(220, 220, 220))
|
| 245 |
+
input_image = render_text(input_image, f"{COCOLabels(box.classID).name}: {box.confidence:.2f}", (box.x1, box.y1), color=(30, 30, 30), normalised_scaling=0.5)
|
| 246 |
+
|
| 247 |
+
if FLAGS.out:
|
| 248 |
+
cv2.imwrite(FLAGS.out, input_image)
|
| 249 |
+
print(f"Saved result to {FLAGS.out}")
|
| 250 |
+
else:
|
| 251 |
+
cv2.imshow('image', input_image)
|
| 252 |
+
cv2.waitKey(0)
|
| 253 |
+
cv2.destroyAllWindows()
|
| 254 |
+
|
| 255 |
+
# VIDEO MODE
|
| 256 |
+
if FLAGS.mode == 'video':
|
| 257 |
+
print("Running in 'video' mode")
|
| 258 |
+
if not FLAGS.input:
|
| 259 |
+
print("FAILED: no input video")
|
| 260 |
+
sys.exit(1)
|
| 261 |
+
|
| 262 |
+
inputs = []
|
| 263 |
+
outputs = []
|
| 264 |
+
inputs.append(grpcclient.InferInput(INPUT_NAMES[0], [1, 3, FLAGS.width, FLAGS.height], "FP32"))
|
| 265 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[0]))
|
| 266 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[1]))
|
| 267 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[2]))
|
| 268 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[3]))
|
| 269 |
+
|
| 270 |
+
print("Opening input video stream...")
|
| 271 |
+
cap = cv2.VideoCapture(FLAGS.input)
|
| 272 |
+
if not cap.isOpened():
|
| 273 |
+
print(f"FAILED: cannot open video {FLAGS.input}")
|
| 274 |
+
sys.exit(1)
|
| 275 |
+
|
| 276 |
+
counter = 0
|
| 277 |
+
out = None
|
| 278 |
+
print("Invoking inference...")
|
| 279 |
+
while True:
|
| 280 |
+
ret, frame = cap.read()
|
| 281 |
+
if not ret:
|
| 282 |
+
print("failed to fetch next frame")
|
| 283 |
+
break
|
| 284 |
+
|
| 285 |
+
if counter == 0 and FLAGS.out:
|
| 286 |
+
print("Opening output video stream...")
|
| 287 |
+
fourcc = cv2.VideoWriter_fourcc('M', 'P', '4', 'V')
|
| 288 |
+
out = cv2.VideoWriter(FLAGS.out, fourcc, FLAGS.fps, (frame.shape[1], frame.shape[0]))
|
| 289 |
+
|
| 290 |
+
input_image_buffer = preprocess(frame, [FLAGS.width, FLAGS.height])
|
| 291 |
+
input_image_buffer = np.expand_dims(input_image_buffer, axis=0)
|
| 292 |
+
|
| 293 |
+
inputs[0].set_data_from_numpy(input_image_buffer)
|
| 294 |
+
|
| 295 |
+
results = triton_client.infer(model_name=FLAGS.model,
|
| 296 |
+
inputs=inputs,
|
| 297 |
+
outputs=outputs,
|
| 298 |
+
client_timeout=FLAGS.client_timeout)
|
| 299 |
+
|
| 300 |
+
num_dets = results.as_numpy("num_dets")
|
| 301 |
+
det_boxes = results.as_numpy("det_boxes")
|
| 302 |
+
det_scores = results.as_numpy("det_scores")
|
| 303 |
+
det_classes = results.as_numpy("det_classes")
|
| 304 |
+
detected_objects = postprocess(num_dets, det_boxes, det_scores, det_classes, frame.shape[1], frame.shape[0], [FLAGS.width, FLAGS.height])
|
| 305 |
+
print(f"Frame {counter}: {len(detected_objects)} objects")
|
| 306 |
+
counter += 1
|
| 307 |
+
|
| 308 |
+
for box in detected_objects:
|
| 309 |
+
print(f"{COCOLabels(box.classID).name}: {box.confidence}")
|
| 310 |
+
frame = render_box(frame, box.box(), color=tuple(RAND_COLORS[box.classID % 64].tolist()))
|
| 311 |
+
size = get_text_size(frame, f"{COCOLabels(box.classID).name}: {box.confidence:.2f}", normalised_scaling=0.6)
|
| 312 |
+
frame = render_filled_box(frame, (box.x1 - 3, box.y1 - 3, box.x1 + size[0], box.y1 + size[1]), color=(220, 220, 220))
|
| 313 |
+
frame = render_text(frame, f"{COCOLabels(box.classID).name}: {box.confidence:.2f}", (box.x1, box.y1), color=(30, 30, 30), normalised_scaling=0.5)
|
| 314 |
+
|
| 315 |
+
if FLAGS.out:
|
| 316 |
+
out.write(frame)
|
| 317 |
+
else:
|
| 318 |
+
cv2.imshow('image', frame)
|
| 319 |
+
if cv2.waitKey(1) == ord('q'):
|
| 320 |
+
break
|
| 321 |
+
|
| 322 |
+
if FLAGS.model_info:
|
| 323 |
+
statistics = triton_client.get_inference_statistics(model_name=FLAGS.model)
|
| 324 |
+
if len(statistics.model_stats) != 1:
|
| 325 |
+
print("FAILED: get_inference_statistics")
|
| 326 |
+
sys.exit(1)
|
| 327 |
+
print(statistics)
|
| 328 |
+
print("Done")
|
| 329 |
+
|
| 330 |
+
cap.release()
|
| 331 |
+
if FLAGS.out:
|
| 332 |
+
out.release()
|
| 333 |
+
else:
|
| 334 |
+
cv2.destroyAllWindows()
|
deploy/triton-inference-server/labels.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from enum import Enum
|
| 2 |
+
|
| 3 |
+
class COCOLabels(Enum):
|
| 4 |
+
PERSON = 0
|
| 5 |
+
BICYCLE = 1
|
| 6 |
+
CAR = 2
|
| 7 |
+
MOTORBIKE = 3
|
| 8 |
+
AEROPLANE = 4
|
| 9 |
+
BUS = 5
|
| 10 |
+
TRAIN = 6
|
| 11 |
+
TRUCK = 7
|
| 12 |
+
BOAT = 8
|
| 13 |
+
TRAFFIC_LIGHT = 9
|
| 14 |
+
FIRE_HYDRANT = 10
|
| 15 |
+
STOP_SIGN = 11
|
| 16 |
+
PARKING_METER = 12
|
| 17 |
+
BENCH = 13
|
| 18 |
+
BIRD = 14
|
| 19 |
+
CAT = 15
|
| 20 |
+
DOG = 16
|
| 21 |
+
HORSE = 17
|
| 22 |
+
SHEEP = 18
|
| 23 |
+
COW = 19
|
| 24 |
+
ELEPHANT = 20
|
| 25 |
+
BEAR = 21
|
| 26 |
+
ZEBRA = 22
|
| 27 |
+
GIRAFFE = 23
|
| 28 |
+
BACKPACK = 24
|
| 29 |
+
UMBRELLA = 25
|
| 30 |
+
HANDBAG = 26
|
| 31 |
+
TIE = 27
|
| 32 |
+
SUITCASE = 28
|
| 33 |
+
FRISBEE = 29
|
| 34 |
+
SKIS = 30
|
| 35 |
+
SNOWBOARD = 31
|
| 36 |
+
SPORTS_BALL = 32
|
| 37 |
+
KITE = 33
|
| 38 |
+
BASEBALL_BAT = 34
|
| 39 |
+
BASEBALL_GLOVE = 35
|
| 40 |
+
SKATEBOARD = 36
|
| 41 |
+
SURFBOARD = 37
|
| 42 |
+
TENNIS_RACKET = 38
|
| 43 |
+
BOTTLE = 39
|
| 44 |
+
WINE_GLASS = 40
|
| 45 |
+
CUP = 41
|
| 46 |
+
FORK = 42
|
| 47 |
+
KNIFE = 43
|
| 48 |
+
SPOON = 44
|
| 49 |
+
BOWL = 45
|
| 50 |
+
BANANA = 46
|
| 51 |
+
APPLE = 47
|
| 52 |
+
SANDWICH = 48
|
| 53 |
+
ORANGE = 49
|
| 54 |
+
BROCCOLI = 50
|
| 55 |
+
CARROT = 51
|
| 56 |
+
HOT_DOG = 52
|
| 57 |
+
PIZZA = 53
|
| 58 |
+
DONUT = 54
|
| 59 |
+
CAKE = 55
|
| 60 |
+
CHAIR = 56
|
| 61 |
+
SOFA = 57
|
| 62 |
+
POTTEDPLANT = 58
|
| 63 |
+
BED = 59
|
| 64 |
+
DININGTABLE = 60
|
| 65 |
+
TOILET = 61
|
| 66 |
+
TVMONITOR = 62
|
| 67 |
+
LAPTOP = 63
|
| 68 |
+
MOUSE = 64
|
| 69 |
+
REMOTE = 65
|
| 70 |
+
KEYBOARD = 66
|
| 71 |
+
CELL_PHONE = 67
|
| 72 |
+
MICROWAVE = 68
|
| 73 |
+
OVEN = 69
|
| 74 |
+
TOASTER = 70
|
| 75 |
+
SINK = 71
|
| 76 |
+
REFRIGERATOR = 72
|
| 77 |
+
BOOK = 73
|
| 78 |
+
CLOCK = 74
|
| 79 |
+
VASE = 75
|
| 80 |
+
SCISSORS = 76
|
| 81 |
+
TEDDY_BEAR = 77
|
| 82 |
+
HAIR_DRIER = 78
|
| 83 |
+
TOOTHBRUSH = 79
|
deploy/triton-inference-server/processing.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from boundingbox import BoundingBox
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
def preprocess(img, input_shape, letter_box=True):
|
| 7 |
+
if letter_box:
|
| 8 |
+
img_h, img_w, _ = img.shape
|
| 9 |
+
new_h, new_w = input_shape[0], input_shape[1]
|
| 10 |
+
offset_h, offset_w = 0, 0
|
| 11 |
+
if (new_w / img_w) <= (new_h / img_h):
|
| 12 |
+
new_h = int(img_h * new_w / img_w)
|
| 13 |
+
offset_h = (input_shape[0] - new_h) // 2
|
| 14 |
+
else:
|
| 15 |
+
new_w = int(img_w * new_h / img_h)
|
| 16 |
+
offset_w = (input_shape[1] - new_w) // 2
|
| 17 |
+
resized = cv2.resize(img, (new_w, new_h))
|
| 18 |
+
img = np.full((input_shape[0], input_shape[1], 3), 127, dtype=np.uint8)
|
| 19 |
+
img[offset_h:(offset_h + new_h), offset_w:(offset_w + new_w), :] = resized
|
| 20 |
+
else:
|
| 21 |
+
img = cv2.resize(img, (input_shape[1], input_shape[0]))
|
| 22 |
+
|
| 23 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 24 |
+
img = img.transpose((2, 0, 1)).astype(np.float32)
|
| 25 |
+
img /= 255.0
|
| 26 |
+
return img
|
| 27 |
+
|
| 28 |
+
def postprocess(num_dets, det_boxes, det_scores, det_classes, img_w, img_h, input_shape, letter_box=True):
|
| 29 |
+
boxes = det_boxes[0, :num_dets[0][0]] / np.array([input_shape[0], input_shape[1], input_shape[0], input_shape[1]], dtype=np.float32)
|
| 30 |
+
scores = det_scores[0, :num_dets[0][0]]
|
| 31 |
+
classes = det_classes[0, :num_dets[0][0]].astype(np.int)
|
| 32 |
+
|
| 33 |
+
old_h, old_w = img_h, img_w
|
| 34 |
+
offset_h, offset_w = 0, 0
|
| 35 |
+
if letter_box:
|
| 36 |
+
if (img_w / input_shape[1]) >= (img_h / input_shape[0]):
|
| 37 |
+
old_h = int(input_shape[0] * img_w / input_shape[1])
|
| 38 |
+
offset_h = (old_h - img_h) // 2
|
| 39 |
+
else:
|
| 40 |
+
old_w = int(input_shape[1] * img_h / input_shape[0])
|
| 41 |
+
offset_w = (old_w - img_w) // 2
|
| 42 |
+
|
| 43 |
+
boxes = boxes * np.array([old_w, old_h, old_w, old_h], dtype=np.float32)
|
| 44 |
+
if letter_box:
|
| 45 |
+
boxes -= np.array([offset_w, offset_h, offset_w, offset_h], dtype=np.float32)
|
| 46 |
+
boxes = boxes.astype(np.int)
|
| 47 |
+
|
| 48 |
+
detected_objects = []
|
| 49 |
+
for box, score, label in zip(boxes, scores, classes):
|
| 50 |
+
detected_objects.append(BoundingBox(label, score, box[0], box[2], box[1], box[3], img_w, img_h))
|
| 51 |
+
return detected_objects
|
deploy/triton-inference-server/render.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
|
| 5 |
+
from math import sqrt
|
| 6 |
+
|
| 7 |
+
_LINE_THICKNESS_SCALING = 500.0
|
| 8 |
+
|
| 9 |
+
np.random.seed(0)
|
| 10 |
+
RAND_COLORS = np.random.randint(50, 255, (64, 3), "int") # used for class visu
|
| 11 |
+
RAND_COLORS[0] = [220, 220, 220]
|
| 12 |
+
|
| 13 |
+
def render_box(img, box, color=(200, 200, 200)):
|
| 14 |
+
"""
|
| 15 |
+
Render a box. Calculates scaling and thickness automatically.
|
| 16 |
+
:param img: image to render into
|
| 17 |
+
:param box: (x1, y1, x2, y2) - box coordinates
|
| 18 |
+
:param color: (b, g, r) - box color
|
| 19 |
+
:return: updated image
|
| 20 |
+
"""
|
| 21 |
+
x1, y1, x2, y2 = box
|
| 22 |
+
thickness = int(
|
| 23 |
+
round(
|
| 24 |
+
(img.shape[0] * img.shape[1])
|
| 25 |
+
/ (_LINE_THICKNESS_SCALING * _LINE_THICKNESS_SCALING)
|
| 26 |
+
)
|
| 27 |
+
)
|
| 28 |
+
thickness = max(1, thickness)
|
| 29 |
+
img = cv2.rectangle(
|
| 30 |
+
img,
|
| 31 |
+
(int(x1), int(y1)),
|
| 32 |
+
(int(x2), int(y2)),
|
| 33 |
+
color,
|
| 34 |
+
thickness=thickness
|
| 35 |
+
)
|
| 36 |
+
return img
|
| 37 |
+
|
| 38 |
+
def render_filled_box(img, box, color=(200, 200, 200)):
|
| 39 |
+
"""
|
| 40 |
+
Render a box. Calculates scaling and thickness automatically.
|
| 41 |
+
:param img: image to render into
|
| 42 |
+
:param box: (x1, y1, x2, y2) - box coordinates
|
| 43 |
+
:param color: (b, g, r) - box color
|
| 44 |
+
:return: updated image
|
| 45 |
+
"""
|
| 46 |
+
x1, y1, x2, y2 = box
|
| 47 |
+
img = cv2.rectangle(
|
| 48 |
+
img,
|
| 49 |
+
(int(x1), int(y1)),
|
| 50 |
+
(int(x2), int(y2)),
|
| 51 |
+
color,
|
| 52 |
+
thickness=cv2.FILLED
|
| 53 |
+
)
|
| 54 |
+
return img
|
| 55 |
+
|
| 56 |
+
_TEXT_THICKNESS_SCALING = 700.0
|
| 57 |
+
_TEXT_SCALING = 520.0
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def get_text_size(img, text, normalised_scaling=1.0):
|
| 61 |
+
"""
|
| 62 |
+
Get calculated text size (as box width and height)
|
| 63 |
+
:param img: image reference, used to determine appropriate text scaling
|
| 64 |
+
:param text: text to display
|
| 65 |
+
:param normalised_scaling: additional normalised scaling. Default 1.0.
|
| 66 |
+
:return: (width, height) - width and height of text box
|
| 67 |
+
"""
|
| 68 |
+
thickness = int(
|
| 69 |
+
round(
|
| 70 |
+
(img.shape[0] * img.shape[1])
|
| 71 |
+
/ (_TEXT_THICKNESS_SCALING * _TEXT_THICKNESS_SCALING)
|
| 72 |
+
)
|
| 73 |
+
* normalised_scaling
|
| 74 |
+
)
|
| 75 |
+
thickness = max(1, thickness)
|
| 76 |
+
scaling = img.shape[0] / _TEXT_SCALING * normalised_scaling
|
| 77 |
+
return cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, scaling, thickness)[0]
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def render_text(img, text, pos, color=(200, 200, 200), normalised_scaling=1.0):
|
| 81 |
+
"""
|
| 82 |
+
Render a text into the image. Calculates scaling and thickness automatically.
|
| 83 |
+
:param img: image to render into
|
| 84 |
+
:param text: text to display
|
| 85 |
+
:param pos: (x, y) - upper left coordinates of render position
|
| 86 |
+
:param color: (b, g, r) - text color
|
| 87 |
+
:param normalised_scaling: additional normalised scaling. Default 1.0.
|
| 88 |
+
:return: updated image
|
| 89 |
+
"""
|
| 90 |
+
x, y = pos
|
| 91 |
+
thickness = int(
|
| 92 |
+
round(
|
| 93 |
+
(img.shape[0] * img.shape[1])
|
| 94 |
+
/ (_TEXT_THICKNESS_SCALING * _TEXT_THICKNESS_SCALING)
|
| 95 |
+
)
|
| 96 |
+
* normalised_scaling
|
| 97 |
+
)
|
| 98 |
+
thickness = max(1, thickness)
|
| 99 |
+
scaling = img.shape[0] / _TEXT_SCALING * normalised_scaling
|
| 100 |
+
size = get_text_size(img, text, normalised_scaling)
|
| 101 |
+
cv2.putText(
|
| 102 |
+
img,
|
| 103 |
+
text,
|
| 104 |
+
(int(x), int(y + size[1])),
|
| 105 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 106 |
+
scaling,
|
| 107 |
+
color,
|
| 108 |
+
thickness=thickness,
|
| 109 |
+
)
|
| 110 |
+
return img
|
environment.yml
ADDED
|
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: myominhtet
|
| 2 |
+
channels:
|
| 3 |
+
- conda-forge
|
| 4 |
+
- pytorch
|
| 5 |
+
- defaults
|
| 6 |
+
dependencies:
|
| 7 |
+
- _libgcc_mutex=0.1=main
|
| 8 |
+
- _openmp_mutex=5.1=1_gnu
|
| 9 |
+
- asttokens=3.0.0=py311h06a4308_0
|
| 10 |
+
- blas=1.0=mkl
|
| 11 |
+
- brotli-python=1.0.9=py311h6a678d5_9
|
| 12 |
+
- bzip2=1.0.8=h5eee18b_6
|
| 13 |
+
- ca-certificates=2025.2.25=h06a4308_0
|
| 14 |
+
- certifi=2025.1.31=py311h06a4308_0
|
| 15 |
+
- comm=0.2.1=py311h06a4308_0
|
| 16 |
+
- cpuonly=2.0=0
|
| 17 |
+
- debugpy=1.8.11=py311h6a678d5_0
|
| 18 |
+
- decorator=5.1.1=pyhd3eb1b0_0
|
| 19 |
+
- executing=0.8.3=pyhd3eb1b0_0
|
| 20 |
+
- filelock=3.13.1=py311h06a4308_0
|
| 21 |
+
- gmp=6.3.0=h6a678d5_0
|
| 22 |
+
- gmpy2=2.2.1=py311h5eee18b_0
|
| 23 |
+
- intel-openmp=2023.1.0=hdb19cb5_46306
|
| 24 |
+
- ipykernel=6.29.0=pyhd33586a_0
|
| 25 |
+
- ipython=8.30.0=py311h06a4308_0
|
| 26 |
+
- jedi=0.19.2=py311h06a4308_0
|
| 27 |
+
- jinja2=3.1.6=py311h06a4308_0
|
| 28 |
+
- jupyter_client=8.6.3=py311h06a4308_0
|
| 29 |
+
- jupyter_core=5.7.2=py311h06a4308_0
|
| 30 |
+
- ld_impl_linux-64=2.40=h12ee557_0
|
| 31 |
+
- libffi=3.4.4=h6a678d5_1
|
| 32 |
+
- libgcc-ng=11.2.0=h1234567_1
|
| 33 |
+
- libgomp=11.2.0=h1234567_1
|
| 34 |
+
- libllvm14=14.0.6=hecde1de_4
|
| 35 |
+
- libsodium=1.0.18=h7b6447c_0
|
| 36 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
| 37 |
+
- libuuid=1.41.5=h5eee18b_0
|
| 38 |
+
- llvm-openmp=14.0.6=h9e868ea_0
|
| 39 |
+
- llvmlite=0.41.0=py311he621ea3_0
|
| 40 |
+
- markupsafe=3.0.2=py311h5eee18b_0
|
| 41 |
+
- matplotlib-inline=0.1.6=py311h06a4308_0
|
| 42 |
+
- mkl=2023.1.0=h213fc3f_46344
|
| 43 |
+
- mkl-service=2.4.0=py311h5eee18b_2
|
| 44 |
+
- mkl_fft=1.3.11=py311h5eee18b_0
|
| 45 |
+
- mkl_random=1.2.8=py311ha02d727_0
|
| 46 |
+
- mpc=1.3.1=h5eee18b_0
|
| 47 |
+
- mpfr=4.2.1=h5eee18b_0
|
| 48 |
+
- mpmath=1.3.0=py311h06a4308_0
|
| 49 |
+
- ncurses=6.4=h6a678d5_0
|
| 50 |
+
- nest-asyncio=1.6.0=py311h06a4308_0
|
| 51 |
+
- networkx=3.4.2=py311h06a4308_0
|
| 52 |
+
- numba=0.58.1=py311ha02d727_0
|
| 53 |
+
- numpy=1.26.4=py311h08b1b3b_0
|
| 54 |
+
- numpy-base=1.26.4=py311hf175353_0
|
| 55 |
+
- openssl=3.0.16=h5eee18b_0
|
| 56 |
+
- packaging=24.2=py311h06a4308_0
|
| 57 |
+
- parso=0.8.4=py311h06a4308_0
|
| 58 |
+
- pexpect=4.8.0=pyhd3eb1b0_3
|
| 59 |
+
- pip=25.0=py311h06a4308_0
|
| 60 |
+
- platformdirs=3.10.0=py311h06a4308_0
|
| 61 |
+
- prompt-toolkit=3.0.43=py311h06a4308_0
|
| 62 |
+
- prompt_toolkit=3.0.43=hd3eb1b0_0
|
| 63 |
+
- psutil=5.9.0=py311h5eee18b_1
|
| 64 |
+
- ptyprocess=0.7.0=pyhd3eb1b0_2
|
| 65 |
+
- pure_eval=0.2.2=pyhd3eb1b0_0
|
| 66 |
+
- pygments=2.15.1=py311h06a4308_1
|
| 67 |
+
- pysocks=1.7.1=py311h06a4308_0
|
| 68 |
+
- python=3.11.11=he870216_0
|
| 69 |
+
- python-dateutil=2.9.0post0=py311h06a4308_2
|
| 70 |
+
- pytorch-mutex=1.0=cpu
|
| 71 |
+
- pyyaml=6.0.2=py311h5eee18b_0
|
| 72 |
+
- pyzmq=26.2.0=py311h6a678d5_0
|
| 73 |
+
- readline=8.2=h5eee18b_0
|
| 74 |
+
- setuptools=75.8.0=py311h06a4308_0
|
| 75 |
+
- six=1.16.0=pyhd3eb1b0_1
|
| 76 |
+
- sqlite=3.45.3=h5eee18b_0
|
| 77 |
+
- stack_data=0.2.0=pyhd3eb1b0_0
|
| 78 |
+
- tbb=2021.8.0=hdb19cb5_0
|
| 79 |
+
- tk=8.6.14=h39e8969_0
|
| 80 |
+
- torchaudio=2.1.2=py311_cpu
|
| 81 |
+
- tornado=6.4.2=py311h5eee18b_0
|
| 82 |
+
- traitlets=5.14.3=py311h06a4308_0
|
| 83 |
+
- typing_extensions=4.12.2=py311h06a4308_0
|
| 84 |
+
- urllib3=2.3.0=py311h06a4308_0
|
| 85 |
+
- wcwidth=0.2.5=pyhd3eb1b0_0
|
| 86 |
+
- wheel=0.45.1=py311h06a4308_0
|
| 87 |
+
- xz=5.6.4=h5eee18b_1
|
| 88 |
+
- yaml=0.2.5=h7b6447c_0
|
| 89 |
+
- zeromq=4.3.5=h6a678d5_0
|
| 90 |
+
- zlib=1.2.13=h5eee18b_1
|
| 91 |
+
- pip:
|
| 92 |
+
- absl-py==2.1.0
|
| 93 |
+
- accelerate==0.28.0
|
| 94 |
+
- aiofiles==23.2.1
|
| 95 |
+
- aiohttp==3.9.3
|
| 96 |
+
- aiosignal==1.3.1
|
| 97 |
+
- albumentations==1.4.0
|
| 98 |
+
- alembic==1.13.1
|
| 99 |
+
- amqp==5.2.0
|
| 100 |
+
- annotated-types==0.6.0
|
| 101 |
+
- antlr4-python3-runtime==4.9.3
|
| 102 |
+
- anyio==4.3.0
|
| 103 |
+
- appdirs==1.4.4
|
| 104 |
+
- attrs==23.2.0
|
| 105 |
+
- basemap==1.4.0
|
| 106 |
+
- basemap-data==1.3.2
|
| 107 |
+
- bcrypt==4.1.3
|
| 108 |
+
- beautifulsoup4==4.12.3
|
| 109 |
+
- black==24.3.0
|
| 110 |
+
- blinker==1.7.0
|
| 111 |
+
- blis==0.7.11
|
| 112 |
+
- bs4==0.0.2
|
| 113 |
+
- cachetools==5.3.3
|
| 114 |
+
- catalogue==2.0.10
|
| 115 |
+
- catboost==1.2.2
|
| 116 |
+
- charset-normalizer==3.4.1
|
| 117 |
+
- click==8.1.7
|
| 118 |
+
- click-plugins==1.1.1
|
| 119 |
+
- cligj==0.7.2
|
| 120 |
+
- cloudpathlib==0.18.1
|
| 121 |
+
- cloudpickle==3.0.0
|
| 122 |
+
- colorama==0.4.6
|
| 123 |
+
- coloredlogs==15.0.1
|
| 124 |
+
- colorlog==6.8.2
|
| 125 |
+
- confection==0.1.5
|
| 126 |
+
- configparser==6.0.1
|
| 127 |
+
- contourpy==1.2.0
|
| 128 |
+
- crayons==0.4.0
|
| 129 |
+
- croniter==2.0.5
|
| 130 |
+
- cssselect==1.2.0
|
| 131 |
+
- cycler==0.12.1
|
| 132 |
+
- cymem==2.0.8
|
| 133 |
+
- dataclasses-json==0.6.4
|
| 134 |
+
- datasets==2.18.0
|
| 135 |
+
- dateparser==1.2.0
|
| 136 |
+
- debtcollector==3.0.0
|
| 137 |
+
- demjson3==3.0.6
|
| 138 |
+
- detectron2==0.6
|
| 139 |
+
- dill==0.3.8
|
| 140 |
+
- distlib==0.3.8
|
| 141 |
+
- distro==1.9.0
|
| 142 |
+
- dnspython==2.6.1
|
| 143 |
+
- dogpile-cache==1.3.3
|
| 144 |
+
- efficientnet-pytorch==0.7.1
|
| 145 |
+
- emoji==2.11.1
|
| 146 |
+
- en-core-web-sm==3.7.1
|
| 147 |
+
- et-xmlfile==1.1.0
|
| 148 |
+
- evdev==1.7.0
|
| 149 |
+
- eventlet==0.36.1
|
| 150 |
+
- facebook-page-scraper==5.0.2
|
| 151 |
+
- facebook-scraper==0.2.59
|
| 152 |
+
- facebook-sdk==3.1.0
|
| 153 |
+
- fake-useragent==1.4.0
|
| 154 |
+
- fastapi==0.115.4
|
| 155 |
+
- fasteners==0.19
|
| 156 |
+
- fastjsonschema==2.19.1
|
| 157 |
+
- fasttext==0.9.2
|
| 158 |
+
- ffmpeg-python==0.2.0
|
| 159 |
+
- ffmpy==0.4.0
|
| 160 |
+
- fiona==1.9.5
|
| 161 |
+
- fire==0.6.0
|
| 162 |
+
- flatbuffers==24.3.25
|
| 163 |
+
- fonttools==4.47.2
|
| 164 |
+
- frozenlist==1.4.1
|
| 165 |
+
- fsspec==2023.12.2
|
| 166 |
+
- future==1.0.0
|
| 167 |
+
- futurist==3.0.0
|
| 168 |
+
- fvcore==0.1.5.post20221221
|
| 169 |
+
- gdown==5.2.0
|
| 170 |
+
- gensim==4.3.2
|
| 171 |
+
- geographiclib==2.0
|
| 172 |
+
- geopandas==0.14.3
|
| 173 |
+
- geopy==2.4.1
|
| 174 |
+
- gkeepapi==0.16.0
|
| 175 |
+
- gmplot==1.4.1
|
| 176 |
+
- google-api-core==2.22.0
|
| 177 |
+
- google-auth==2.35.0
|
| 178 |
+
- google-auth-oauthlib==1.2.1
|
| 179 |
+
- google-cloud-vision==3.8.0
|
| 180 |
+
- google-images-download==2.8.0
|
| 181 |
+
- googleapis-common-protos==1.65.0
|
| 182 |
+
- gpsoauth==1.1.1
|
| 183 |
+
- gradio==4.44.0
|
| 184 |
+
- gradio-client==1.3.0
|
| 185 |
+
- greenlet==3.0.3
|
| 186 |
+
- grpcio==1.67.1
|
| 187 |
+
- grpcio-status==1.67.1
|
| 188 |
+
- h11==0.14.0
|
| 189 |
+
- h2==4.1.0
|
| 190 |
+
- h5py==3.10.0
|
| 191 |
+
- hpack==4.0.0
|
| 192 |
+
- httpcore==1.0.5
|
| 193 |
+
- httptools==0.6.1
|
| 194 |
+
- httpx==0.27.0
|
| 195 |
+
- huggingface-hub==0.24.7
|
| 196 |
+
- humanfriendly==10.0
|
| 197 |
+
- hydra-core==1.3.2
|
| 198 |
+
- hyperframe==6.0.1
|
| 199 |
+
- idna==3.10
|
| 200 |
+
- imagecodecs==2024.12.30
|
| 201 |
+
- imageio==2.34.0
|
| 202 |
+
- imbalanced-learn==0.12.2
|
| 203 |
+
- imblearn==0.0
|
| 204 |
+
- imgviz==1.7.5
|
| 205 |
+
- importlib-resources==6.4.5
|
| 206 |
+
- iopath==0.1.9
|
| 207 |
+
- iso8601==2.1.0
|
| 208 |
+
- jax==0.5.2
|
| 209 |
+
- jaxlib==0.5.1
|
| 210 |
+
- joblib==1.3.2
|
| 211 |
+
- jsonpatch==1.33
|
| 212 |
+
- jsonpointer==2.4
|
| 213 |
+
- jsonschema==4.21.1
|
| 214 |
+
- jsonschema-specifications==2023.12.1
|
| 215 |
+
- kaitaistruct==0.10
|
| 216 |
+
- keyboard==0.13.5
|
| 217 |
+
- keystoneauth1==5.6.0
|
| 218 |
+
- keystonemiddleware==10.7.0
|
| 219 |
+
- kiwisolver==1.4.5
|
| 220 |
+
- kombu==5.3.7
|
| 221 |
+
- labelme==5.5.0
|
| 222 |
+
- labelme2coco==0.2.6
|
| 223 |
+
- langchain==0.1.12
|
| 224 |
+
- langchain-community==0.0.28
|
| 225 |
+
- langchain-core==0.1.32
|
| 226 |
+
- langchain-text-splitters==0.0.1
|
| 227 |
+
- langcodes==3.4.0
|
| 228 |
+
- langdetect==1.0.9
|
| 229 |
+
- langsmith==0.1.27
|
| 230 |
+
- language-data==1.2.0
|
| 231 |
+
- lazy-loader==0.3
|
| 232 |
+
- lightgbm==4.2.0
|
| 233 |
+
- logutils==0.3.5
|
| 234 |
+
- lxml==5.1.0
|
| 235 |
+
- mako==1.3.5
|
| 236 |
+
- marisa-trie==1.2.0
|
| 237 |
+
- markdown==3.6
|
| 238 |
+
- markdown-it-py==3.0.0
|
| 239 |
+
- marshmallow==3.21.1
|
| 240 |
+
- matplotlib==3.8.2
|
| 241 |
+
- mdurl==0.1.2
|
| 242 |
+
- mediapipe==0.10.21
|
| 243 |
+
- mistral==18.0.1
|
| 244 |
+
- mistral-lib==3.0.0
|
| 245 |
+
- mistralai==0.4.1
|
| 246 |
+
- ml-dtypes==0.5.1
|
| 247 |
+
- msgpack==1.0.8
|
| 248 |
+
- multidict==6.0.5
|
| 249 |
+
- multiprocess==0.70.16
|
| 250 |
+
- munch==4.0.0
|
| 251 |
+
- murmurhash==1.0.10
|
| 252 |
+
- myanmartools==1.2.1
|
| 253 |
+
- mypy-extensions==1.0.0
|
| 254 |
+
- natsort==8.4.0
|
| 255 |
+
- nbformat==5.9.2
|
| 256 |
+
- netaddr==1.3.0
|
| 257 |
+
- netifaces==0.11.0
|
| 258 |
+
- nltk==3.8.1
|
| 259 |
+
- nvidia-cublas-cu12==12.4.5.8
|
| 260 |
+
- nvidia-cuda-cupti-cu12==12.4.127
|
| 261 |
+
- nvidia-cuda-nvrtc-cu12==12.4.127
|
| 262 |
+
- nvidia-cuda-runtime-cu12==12.4.127
|
| 263 |
+
- nvidia-cudnn-cu12==9.1.0.70
|
| 264 |
+
- nvidia-cufft-cu12==11.2.1.3
|
| 265 |
+
- nvidia-curand-cu12==10.3.5.147
|
| 266 |
+
- nvidia-cusolver-cu12==11.6.1.9
|
| 267 |
+
- nvidia-cusparse-cu12==12.3.1.170
|
| 268 |
+
- nvidia-cusparselt-cu12==0.6.2
|
| 269 |
+
- nvidia-nccl-cu12==2.21.5
|
| 270 |
+
- nvidia-nvjitlink-cu12==12.4.127
|
| 271 |
+
- nvidia-nvtx-cu12==12.4.127
|
| 272 |
+
- oauthlib==3.2.2
|
| 273 |
+
- omegaconf==2.3.0
|
| 274 |
+
- onnxruntime==1.19.0
|
| 275 |
+
- openai==0.28.0
|
| 276 |
+
- opencv-contrib-python==4.11.0.86
|
| 277 |
+
- opencv-python==4.9.0.80
|
| 278 |
+
- openpyxl==3.1.2
|
| 279 |
+
- opt-einsum==3.4.0
|
| 280 |
+
- optuna==3.6.1
|
| 281 |
+
- orjson==3.9.15
|
| 282 |
+
- os-service-types==1.7.0
|
| 283 |
+
- oslo-cache==3.7.0
|
| 284 |
+
- oslo-concurrency==6.0.0
|
| 285 |
+
- oslo-config==9.4.0
|
| 286 |
+
- oslo-context==5.5.0
|
| 287 |
+
- oslo-db==15.1.0
|
| 288 |
+
- oslo-i18n==6.3.0
|
| 289 |
+
- oslo-log==6.0.0
|
| 290 |
+
- oslo-messaging==14.8.0
|
| 291 |
+
- oslo-metrics==0.8.0
|
| 292 |
+
- oslo-middleware==6.1.0
|
| 293 |
+
- oslo-policy==4.3.0
|
| 294 |
+
- oslo-serialization==5.4.0
|
| 295 |
+
- oslo-service==3.5.0
|
| 296 |
+
- oslo-utils==7.1.0
|
| 297 |
+
- osprofiler==4.1.0
|
| 298 |
+
- outcome==1.3.0.post0
|
| 299 |
+
- pandas==2.2.0
|
| 300 |
+
- paramiko==3.4.0
|
| 301 |
+
- parse==1.20.1
|
| 302 |
+
- paste==3.10.1
|
| 303 |
+
- pastedeploy==3.1.0
|
| 304 |
+
- pathspec==0.12.1
|
| 305 |
+
- pbr==6.0.0
|
| 306 |
+
- pdf2image==1.17.0
|
| 307 |
+
- pecan==1.5.1
|
| 308 |
+
- pillow==11.1.0
|
| 309 |
+
- plotly==5.18.0
|
| 310 |
+
- pluggy==0.3.1
|
| 311 |
+
- plum-dispatch==1.7.4
|
| 312 |
+
- ply==3.11
|
| 313 |
+
- polars==0.20.23
|
| 314 |
+
- portalocker==2.8.2
|
| 315 |
+
- preshed==3.0.9
|
| 316 |
+
- pretrainedmodels==0.7.4
|
| 317 |
+
- prettytable==3.10.0
|
| 318 |
+
- prometheus-client==0.20.0
|
| 319 |
+
- proto-plus==1.25.0
|
| 320 |
+
- protobuf==4.25.6
|
| 321 |
+
- py==1.11.0
|
| 322 |
+
- pyarrow==15.0.1
|
| 323 |
+
- pyarrow-hotfix==0.6
|
| 324 |
+
- pyasn1==0.5.1
|
| 325 |
+
- pyasn1-modules==0.4.1
|
| 326 |
+
- pybboxes==0.1.6
|
| 327 |
+
- pybind11==2.12.0
|
| 328 |
+
- pycadf==3.1.1
|
| 329 |
+
- pycocotools==2.0.7
|
| 330 |
+
- pycryptodomex==3.21.0
|
| 331 |
+
- pydantic==2.6.3
|
| 332 |
+
- pydantic-core==2.16.3
|
| 333 |
+
- pydub==0.25.1
|
| 334 |
+
- pyee==8.2.2
|
| 335 |
+
- pyheif==0.7.1
|
| 336 |
+
- pyicu==2.13.1
|
| 337 |
+
- pyidaungsu==0.1.4
|
| 338 |
+
- pyjwt==2.8.0
|
| 339 |
+
- pymupdf==1.24.5
|
| 340 |
+
- pymupdfb==1.24.3
|
| 341 |
+
- pynacl==1.5.0
|
| 342 |
+
- pynput==1.7.6
|
| 343 |
+
- pyparsing==3.1.1
|
| 344 |
+
- pypdf==4.1.0
|
| 345 |
+
- pypdf2==3.0.1
|
| 346 |
+
- pyppeteer==1.0.2
|
| 347 |
+
- pyproj==3.6.1
|
| 348 |
+
- pyqt5==5.15.11
|
| 349 |
+
- pyqt5-qt5==5.15.14
|
| 350 |
+
- pyqt5-sip==12.15.0
|
| 351 |
+
- pyquery==2.0.0
|
| 352 |
+
- pyshark==0.6
|
| 353 |
+
- pyshp==2.3.1
|
| 354 |
+
- pytesseract==0.3.10
|
| 355 |
+
- python-crfsuite==0.9.10
|
| 356 |
+
- python-docx==1.1.2
|
| 357 |
+
- python-dotenv==1.0.1
|
| 358 |
+
- python-graphviz==0.20.1
|
| 359 |
+
- python-keystoneclient==5.4.0
|
| 360 |
+
- python-multipart==0.0.12
|
| 361 |
+
- python-xlib==0.33
|
| 362 |
+
- pytz==2023.3.post1
|
| 363 |
+
- qtpy==2.4.1
|
| 364 |
+
- qudida==0.0.4
|
| 365 |
+
- rabbit==1.2.0
|
| 366 |
+
- referencing==0.33.0
|
| 367 |
+
- regex==2023.12.25
|
| 368 |
+
- repoze-lru==0.7
|
| 369 |
+
- requests==2.32.3
|
| 370 |
+
- requests-html==0.10.0
|
| 371 |
+
- requests-oauthlib==1.3.1
|
| 372 |
+
- rfc3986==2.0.0
|
| 373 |
+
- rich==13.7.1
|
| 374 |
+
- routes==2.5.1
|
| 375 |
+
- rpds-py==0.18.0
|
| 376 |
+
- rsa==4.9
|
| 377 |
+
- ruff==0.6.5
|
| 378 |
+
- safehttpx==0.1.1
|
| 379 |
+
- safetensors==0.4.1
|
| 380 |
+
- sahi==0.11.18
|
| 381 |
+
- scikit-image==0.22.0
|
| 382 |
+
- scikit-learn==1.4.0
|
| 383 |
+
- scipy==1.11.4
|
| 384 |
+
- seaborn==0.13.1
|
| 385 |
+
- segmentation-models-pytorch==0.3.3
|
| 386 |
+
- selenium==4.24.0
|
| 387 |
+
- selenium-wire==5.1.0
|
| 388 |
+
- semantic-version==2.10.0
|
| 389 |
+
- sentence-transformers==3.0.1
|
| 390 |
+
- sentencepiece==0.2.0
|
| 391 |
+
- shapely==2.0.2
|
| 392 |
+
- shellingham==1.5.4
|
| 393 |
+
- simplegeneric==0.8.1
|
| 394 |
+
- smart-open==7.0.4
|
| 395 |
+
- sniffio==1.3.0
|
| 396 |
+
- sortedcontainers==2.4.0
|
| 397 |
+
- sounddevice==0.5.1
|
| 398 |
+
- soupsieve==2.5
|
| 399 |
+
- spacy==3.7.5
|
| 400 |
+
- spacy-legacy==3.0.12
|
| 401 |
+
- spacy-loggers==1.0.5
|
| 402 |
+
- spire-doc==12.4.0
|
| 403 |
+
- sqlalchemy==2.0.28
|
| 404 |
+
- srsly==2.4.8
|
| 405 |
+
- starlette==0.41.2
|
| 406 |
+
- statsd==4.0.1
|
| 407 |
+
- stevedore==5.2.0
|
| 408 |
+
- super-image==0.1.7
|
| 409 |
+
- sympy==1.13.1
|
| 410 |
+
- tabpfn==0.1.10
|
| 411 |
+
- tabulate==0.9.0
|
| 412 |
+
- tenacity==8.2.3
|
| 413 |
+
- tensorboard==2.16.2
|
| 414 |
+
- tensorboard-data-server==0.7.2
|
| 415 |
+
- termcolor==2.4.0
|
| 416 |
+
- terminaltables==3.1.10
|
| 417 |
+
- testresources==2.0.1
|
| 418 |
+
- testscenarios==0.5.0
|
| 419 |
+
- testtools==2.7.2
|
| 420 |
+
- thinc==8.2.5
|
| 421 |
+
- thop==0.1.1-2209072238
|
| 422 |
+
- threadpoolctl==3.2.0
|
| 423 |
+
- tifffile==2024.2.12
|
| 424 |
+
- tika==2.6.0
|
| 425 |
+
- timm==0.9.2
|
| 426 |
+
- tokenizers==0.20.1
|
| 427 |
+
- tomlkit==0.12.0
|
| 428 |
+
- tooz==6.2.0
|
| 429 |
+
- torch==2.6.0
|
| 430 |
+
- torchvision==0.21.0
|
| 431 |
+
- tox==2.2.1
|
| 432 |
+
- tqdm==4.66.1
|
| 433 |
+
- transformers==4.46.1
|
| 434 |
+
- trio==0.24.0
|
| 435 |
+
- trio-websocket==0.11.1
|
| 436 |
+
- triton==3.2.0
|
| 437 |
+
- tweepy==4.14.0
|
| 438 |
+
- typer==0.12.3
|
| 439 |
+
- typing-inspect==0.9.0
|
| 440 |
+
- tzdata==2023.4
|
| 441 |
+
- tzlocal==5.2
|
| 442 |
+
- urllib3-secure-extra==0.1.0
|
| 443 |
+
- uvicorn==0.27.1
|
| 444 |
+
- uvloop==0.19.0
|
| 445 |
+
- vine==5.1.0
|
| 446 |
+
- virtualenv==20.26.1
|
| 447 |
+
- voluptuous==0.15.1
|
| 448 |
+
- w3lib==2.1.2
|
| 449 |
+
- warcio==1.7.4
|
| 450 |
+
- wasabi==1.1.3
|
| 451 |
+
- watchfiles==0.21.0
|
| 452 |
+
- weasel==0.4.1
|
| 453 |
+
- webdriver-manager==3.2.2
|
| 454 |
+
- webob==1.8.7
|
| 455 |
+
- websocket-client==1.8.0
|
| 456 |
+
- websockets==10.4
|
| 457 |
+
- werkzeug==3.0.1
|
| 458 |
+
- wikipedia==1.4.0
|
| 459 |
+
- wrapt==1.16.0
|
| 460 |
+
- wsme==0.12.1
|
| 461 |
+
- wsproto==1.2.0
|
| 462 |
+
- xgboost==2.0.3
|
| 463 |
+
- xxhash==3.4.1
|
| 464 |
+
- yacs==0.1.8
|
| 465 |
+
- yappi==1.6.0
|
| 466 |
+
- yaql==3.0.0
|
| 467 |
+
- yarl==1.9.4
|
| 468 |
+
- zstandard==0.22.0
|
| 469 |
+
prefix: /home/myominhtet/anaconda3/envs/myominhtet
|
export.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import sys
|
| 3 |
+
import time
|
| 4 |
+
import warnings
|
| 5 |
+
|
| 6 |
+
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
from torch.utils.mobile_optimizer import optimize_for_mobile
|
| 11 |
+
|
| 12 |
+
import models
|
| 13 |
+
from models.experimental import attempt_load, End2End
|
| 14 |
+
from utils.activations import Hardswish, SiLU
|
| 15 |
+
from utils.general import set_logging, check_img_size
|
| 16 |
+
from utils.torch_utils import select_device
|
| 17 |
+
from utils.add_nms import RegisterNMS
|
| 18 |
+
|
| 19 |
+
if __name__ == '__main__':
|
| 20 |
+
parser = argparse.ArgumentParser()
|
| 21 |
+
parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
|
| 22 |
+
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
| 23 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
| 24 |
+
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
|
| 25 |
+
parser.add_argument('--dynamic-batch', action='store_true', help='dynamic batch onnx for tensorrt and onnx-runtime')
|
| 26 |
+
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
|
| 27 |
+
parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
|
| 28 |
+
parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
|
| 29 |
+
parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
|
| 30 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
|
| 31 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
|
| 32 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
| 33 |
+
parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
|
| 34 |
+
parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
|
| 35 |
+
parser.add_argument('--fp16', action='store_true', help='CoreML FP16 half-precision export')
|
| 36 |
+
parser.add_argument('--int8', action='store_true', help='CoreML INT8 quantization')
|
| 37 |
+
opt = parser.parse_args()
|
| 38 |
+
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
| 39 |
+
opt.dynamic = opt.dynamic and not opt.end2end
|
| 40 |
+
opt.dynamic = False if opt.dynamic_batch else opt.dynamic
|
| 41 |
+
print(opt)
|
| 42 |
+
set_logging()
|
| 43 |
+
t = time.time()
|
| 44 |
+
|
| 45 |
+
# Load PyTorch model
|
| 46 |
+
device = select_device(opt.device)
|
| 47 |
+
model = attempt_load(opt.weights, map_location=device) # load FP32 model
|
| 48 |
+
labels = model.names
|
| 49 |
+
|
| 50 |
+
# Checks
|
| 51 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
| 52 |
+
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
| 53 |
+
|
| 54 |
+
# Input
|
| 55 |
+
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
| 56 |
+
|
| 57 |
+
# Update model
|
| 58 |
+
for k, m in model.named_modules():
|
| 59 |
+
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
| 60 |
+
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
| 61 |
+
if isinstance(m.act, nn.Hardswish):
|
| 62 |
+
m.act = Hardswish()
|
| 63 |
+
elif isinstance(m.act, nn.SiLU):
|
| 64 |
+
m.act = SiLU()
|
| 65 |
+
# elif isinstance(m, models.yolo.Detect):
|
| 66 |
+
# m.forward = m.forward_export # assign forward (optional)
|
| 67 |
+
model.model[-1].export = not opt.grid # set Detect() layer grid export
|
| 68 |
+
y = model(img) # dry run
|
| 69 |
+
if opt.include_nms:
|
| 70 |
+
model.model[-1].include_nms = True
|
| 71 |
+
y = None
|
| 72 |
+
|
| 73 |
+
# TorchScript export
|
| 74 |
+
try:
|
| 75 |
+
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
| 76 |
+
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
| 77 |
+
ts = torch.jit.trace(model, img, strict=False)
|
| 78 |
+
ts.save(f)
|
| 79 |
+
print('TorchScript export success, saved as %s' % f)
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print('TorchScript export failure: %s' % e)
|
| 82 |
+
|
| 83 |
+
# CoreML export
|
| 84 |
+
try:
|
| 85 |
+
import coremltools as ct
|
| 86 |
+
|
| 87 |
+
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
| 88 |
+
# convert model from torchscript and apply pixel scaling as per detect.py
|
| 89 |
+
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
| 90 |
+
bits, mode = (8, 'kmeans_lut') if opt.int8 else (16, 'linear') if opt.fp16 else (32, None)
|
| 91 |
+
if bits < 32:
|
| 92 |
+
if sys.platform.lower() == 'darwin': # quantization only supported on macOS
|
| 93 |
+
with warnings.catch_warnings():
|
| 94 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
|
| 95 |
+
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
| 96 |
+
else:
|
| 97 |
+
print('quantization only supported on macOS, skipping...')
|
| 98 |
+
|
| 99 |
+
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
| 100 |
+
ct_model.save(f)
|
| 101 |
+
print('CoreML export success, saved as %s' % f)
|
| 102 |
+
except Exception as e:
|
| 103 |
+
print('CoreML export failure: %s' % e)
|
| 104 |
+
|
| 105 |
+
# TorchScript-Lite export
|
| 106 |
+
try:
|
| 107 |
+
print('\nStarting TorchScript-Lite export with torch %s...' % torch.__version__)
|
| 108 |
+
f = opt.weights.replace('.pt', '.torchscript.ptl') # filename
|
| 109 |
+
tsl = torch.jit.trace(model, img, strict=False)
|
| 110 |
+
tsl = optimize_for_mobile(tsl)
|
| 111 |
+
tsl._save_for_lite_interpreter(f)
|
| 112 |
+
print('TorchScript-Lite export success, saved as %s' % f)
|
| 113 |
+
except Exception as e:
|
| 114 |
+
print('TorchScript-Lite export failure: %s' % e)
|
| 115 |
+
|
| 116 |
+
# ONNX export
|
| 117 |
+
try:
|
| 118 |
+
import onnx
|
| 119 |
+
|
| 120 |
+
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
| 121 |
+
f = opt.weights.replace('.pt', '.onnx') # filename
|
| 122 |
+
model.eval()
|
| 123 |
+
output_names = ['classes', 'boxes'] if y is None else ['output']
|
| 124 |
+
dynamic_axes = None
|
| 125 |
+
if opt.dynamic:
|
| 126 |
+
dynamic_axes = {'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
|
| 127 |
+
'output': {0: 'batch', 2: 'y', 3: 'x'}}
|
| 128 |
+
if opt.dynamic_batch:
|
| 129 |
+
opt.batch_size = 'batch'
|
| 130 |
+
dynamic_axes = {
|
| 131 |
+
'images': {
|
| 132 |
+
0: 'batch',
|
| 133 |
+
}, }
|
| 134 |
+
if opt.end2end and opt.max_wh is None:
|
| 135 |
+
output_axes = {
|
| 136 |
+
'num_dets': {0: 'batch'},
|
| 137 |
+
'det_boxes': {0: 'batch'},
|
| 138 |
+
'det_scores': {0: 'batch'},
|
| 139 |
+
'det_classes': {0: 'batch'},
|
| 140 |
+
}
|
| 141 |
+
else:
|
| 142 |
+
output_axes = {
|
| 143 |
+
'output': {0: 'batch'},
|
| 144 |
+
}
|
| 145 |
+
dynamic_axes.update(output_axes)
|
| 146 |
+
if opt.grid:
|
| 147 |
+
if opt.end2end:
|
| 148 |
+
print('\nStarting export end2end onnx model for %s...' % 'TensorRT' if opt.max_wh is None else 'onnxruntime')
|
| 149 |
+
model = End2End(model,opt.topk_all,opt.iou_thres,opt.conf_thres,opt.max_wh,device,len(labels))
|
| 150 |
+
if opt.end2end and opt.max_wh is None:
|
| 151 |
+
output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
|
| 152 |
+
shapes = [opt.batch_size, 1, opt.batch_size, opt.topk_all, 4,
|
| 153 |
+
opt.batch_size, opt.topk_all, opt.batch_size, opt.topk_all]
|
| 154 |
+
else:
|
| 155 |
+
output_names = ['output']
|
| 156 |
+
else:
|
| 157 |
+
model.model[-1].concat = True
|
| 158 |
+
|
| 159 |
+
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
| 160 |
+
output_names=output_names,
|
| 161 |
+
dynamic_axes=dynamic_axes)
|
| 162 |
+
|
| 163 |
+
# Checks
|
| 164 |
+
onnx_model = onnx.load(f) # load onnx model
|
| 165 |
+
onnx.checker.check_model(onnx_model) # check onnx model
|
| 166 |
+
|
| 167 |
+
if opt.end2end and opt.max_wh is None:
|
| 168 |
+
for i in onnx_model.graph.output:
|
| 169 |
+
for j in i.type.tensor_type.shape.dim:
|
| 170 |
+
j.dim_param = str(shapes.pop(0))
|
| 171 |
+
|
| 172 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
| 173 |
+
|
| 174 |
+
# # Metadata
|
| 175 |
+
# d = {'stride': int(max(model.stride))}
|
| 176 |
+
# for k, v in d.items():
|
| 177 |
+
# meta = onnx_model.metadata_props.add()
|
| 178 |
+
# meta.key, meta.value = k, str(v)
|
| 179 |
+
# onnx.save(onnx_model, f)
|
| 180 |
+
|
| 181 |
+
if opt.simplify:
|
| 182 |
+
try:
|
| 183 |
+
import onnxsim
|
| 184 |
+
|
| 185 |
+
print('\nStarting to simplify ONNX...')
|
| 186 |
+
onnx_model, check = onnxsim.simplify(onnx_model)
|
| 187 |
+
assert check, 'assert check failed'
|
| 188 |
+
except Exception as e:
|
| 189 |
+
print(f'Simplifier failure: {e}')
|
| 190 |
+
|
| 191 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
| 192 |
+
onnx.save(onnx_model,f)
|
| 193 |
+
print('ONNX export success, saved as %s' % f)
|
| 194 |
+
|
| 195 |
+
if opt.include_nms:
|
| 196 |
+
print('Registering NMS plugin for ONNX...')
|
| 197 |
+
mo = RegisterNMS(f)
|
| 198 |
+
mo.register_nms()
|
| 199 |
+
mo.save(f)
|
| 200 |
+
|
| 201 |
+
except Exception as e:
|
| 202 |
+
print('ONNX export failure: %s' % e)
|
| 203 |
+
|
| 204 |
+
# Finish
|
| 205 |
+
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|
hubconf.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PyTorch Hub models
|
| 2 |
+
|
| 3 |
+
Usage:
|
| 4 |
+
import torch
|
| 5 |
+
model = torch.hub.load('repo', 'model')
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
from models.yolo import Model
|
| 13 |
+
from utils.general import check_requirements, set_logging
|
| 14 |
+
from utils.google_utils import attempt_download
|
| 15 |
+
from utils.torch_utils import select_device
|
| 16 |
+
|
| 17 |
+
dependencies = ['torch', 'yaml']
|
| 18 |
+
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
|
| 19 |
+
set_logging()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def create(name, pretrained, channels, classes, autoshape):
|
| 23 |
+
"""Creates a specified model
|
| 24 |
+
|
| 25 |
+
Arguments:
|
| 26 |
+
name (str): name of model, i.e. 'yolov7'
|
| 27 |
+
pretrained (bool): load pretrained weights into the model
|
| 28 |
+
channels (int): number of input channels
|
| 29 |
+
classes (int): number of model classes
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
pytorch model
|
| 33 |
+
"""
|
| 34 |
+
try:
|
| 35 |
+
cfg = list((Path(__file__).parent / 'cfg').rglob(f'{name}.yaml'))[0] # model.yaml path
|
| 36 |
+
model = Model(cfg, channels, classes)
|
| 37 |
+
if pretrained:
|
| 38 |
+
fname = f'{name}.pt' # checkpoint filename
|
| 39 |
+
attempt_download(fname) # download if not found locally
|
| 40 |
+
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
|
| 41 |
+
msd = model.state_dict() # model state_dict
|
| 42 |
+
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
| 43 |
+
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
|
| 44 |
+
model.load_state_dict(csd, strict=False) # load
|
| 45 |
+
if len(ckpt['model'].names) == classes:
|
| 46 |
+
model.names = ckpt['model'].names # set class names attribute
|
| 47 |
+
if autoshape:
|
| 48 |
+
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
| 49 |
+
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
|
| 50 |
+
return model.to(device)
|
| 51 |
+
|
| 52 |
+
except Exception as e:
|
| 53 |
+
s = 'Cache maybe be out of date, try force_reload=True.'
|
| 54 |
+
raise Exception(s) from e
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def custom(path_or_model='path/to/model.pt', autoshape=True):
|
| 58 |
+
"""custom mode
|
| 59 |
+
|
| 60 |
+
Arguments (3 options):
|
| 61 |
+
path_or_model (str): 'path/to/model.pt'
|
| 62 |
+
path_or_model (dict): torch.load('path/to/model.pt')
|
| 63 |
+
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
pytorch model
|
| 67 |
+
"""
|
| 68 |
+
model = torch.load(path_or_model, map_location=torch.device('cpu')) if isinstance(path_or_model, str) else path_or_model # load checkpoint
|
| 69 |
+
if isinstance(model, dict):
|
| 70 |
+
model = model['ema' if model.get('ema') else 'model'] # load model
|
| 71 |
+
|
| 72 |
+
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
|
| 73 |
+
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
|
| 74 |
+
hub_model.names = model.names # class names
|
| 75 |
+
if autoshape:
|
| 76 |
+
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
| 77 |
+
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
|
| 78 |
+
return hub_model.to(device)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def yolov7(pretrained=True, channels=3, classes=80, autoshape=True):
|
| 82 |
+
return create('yolov7', pretrained, channels, classes, autoshape)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
if __name__ == '__main__':
|
| 86 |
+
model = custom(path_or_model='yolov7.pt') # custom example
|
| 87 |
+
# model = create(name='yolov7', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
|
| 88 |
+
|
| 89 |
+
# Verify inference
|
| 90 |
+
import numpy as np
|
| 91 |
+
from PIL import Image
|
| 92 |
+
|
| 93 |
+
imgs = [np.zeros((640, 480, 3))]
|
| 94 |
+
|
| 95 |
+
results = model(imgs) # batched inference
|
| 96 |
+
results.print()
|
| 97 |
+
results.save()
|
interfacetest2.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import time
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import os
|
| 5 |
+
import cv2
|
| 6 |
+
import torch
|
| 7 |
+
import torch.backends.cudnn as cudnn
|
| 8 |
+
from numpy import random
|
| 9 |
+
import numpy as np
|
| 10 |
+
from models.experimental import attempt_load
|
| 11 |
+
from utils.datasets import LoadImages
|
| 12 |
+
from utils.general import check_img_size, non_max_suppression, scale_coords, set_logging, increment_path
|
| 13 |
+
from utils.plots import plot_one_box
|
| 14 |
+
from utils.torch_utils import select_device, time_synchronized
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import ffmpeg
|
| 17 |
+
from fastapi import FastAPI, Request
|
| 18 |
+
from starlette.responses import HTMLResponse
|
| 19 |
+
import uvicorn
|
| 20 |
+
def convert_to_h264(input_path):
|
| 21 |
+
# Construct output path manually by appending '_h264' before the extension
|
| 22 |
+
output_path = str(Path(input_path).with_suffix('')) + "_h264.mp4"
|
| 23 |
+
try:
|
| 24 |
+
stream = ffmpeg.input(input_path)
|
| 25 |
+
stream = ffmpeg.output(stream, output_path, vcodec='libx264', acodec='aac', format='mp4', pix_fmt='yuv420p')
|
| 26 |
+
ffmpeg.run(stream, overwrite_output=True)
|
| 27 |
+
return output_path
|
| 28 |
+
except ffmpeg.Error as e:
|
| 29 |
+
print(f"FFmpeg conversion error: {e.stderr.decode()}")
|
| 30 |
+
return input_path
|
| 31 |
+
|
| 32 |
+
# IoU and scanner movement functions (unchanged)
|
| 33 |
+
def compute_iou(box1, box2):
|
| 34 |
+
x1, y1, x2, y2 = box1
|
| 35 |
+
x1_, y1_, x2_, y2_ = box2
|
| 36 |
+
xi1 = max(x1, x1_)
|
| 37 |
+
yi1 = max(y1, y1_)
|
| 38 |
+
xi2 = min(x2, x2_)
|
| 39 |
+
yi2 = min(y2, y2_)
|
| 40 |
+
inter_width = max(0, xi2 - xi1)
|
| 41 |
+
inter_height = max(0, yi2 - yi1)
|
| 42 |
+
inter_area = inter_width * inter_height
|
| 43 |
+
box1_area = (x2 - x1) * (y2 - y1)
|
| 44 |
+
box2_area = (x2_ - x1_) * (y2_ - y1_)
|
| 45 |
+
union_area = box1_area + box2_area - inter_area
|
| 46 |
+
return inter_area / union_area if union_area != 0 else 0.0
|
| 47 |
+
|
| 48 |
+
def is_scanner_moving(prev_centroids, curr_box, scanner_id, threshold=5.0):
|
| 49 |
+
x1, y1, x2, y2 = curr_box
|
| 50 |
+
curr_centroid = ((x1 + x2) / 2, (y1 + y2) / 2)
|
| 51 |
+
if scanner_id in prev_centroids:
|
| 52 |
+
prev_x, prev_y = prev_centroids[scanner_id]
|
| 53 |
+
distance = np.sqrt((curr_centroid[0] - prev_x)**2 + (curr_centroid[1] - prev_y)**2)
|
| 54 |
+
return distance > threshold
|
| 55 |
+
return False
|
| 56 |
+
|
| 57 |
+
def detect_video(video_path, weights, conf_thres=0.25, iou_thres=0.45, img_size=640, device='', save_dir='runs/detect/exp'):
|
| 58 |
+
save_dir = Path(increment_path(Path(save_dir), exist_ok=True))
|
| 59 |
+
save_dir.mkdir(parents=True, exist_ok=True)
|
| 60 |
+
|
| 61 |
+
set_logging()
|
| 62 |
+
device = select_device(device)
|
| 63 |
+
half = device.type != 'cpu'
|
| 64 |
+
model = attempt_load(weights, map_location=device)
|
| 65 |
+
stride = int(model.stride.max())
|
| 66 |
+
imgsz = check_img_size(img_size, s=stride)
|
| 67 |
+
if half:
|
| 68 |
+
model.half()
|
| 69 |
+
|
| 70 |
+
dataset = LoadImages(video_path, img_size=imgsz, stride=stride)
|
| 71 |
+
names = model.module.names if hasattr(model, 'module') else model.names
|
| 72 |
+
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
| 73 |
+
|
| 74 |
+
vid_path, vid_writer = None, None
|
| 75 |
+
prev_centroids = {}
|
| 76 |
+
scanner_id_counter = 0
|
| 77 |
+
|
| 78 |
+
for path, img, im0s, vid_cap in dataset:
|
| 79 |
+
img = torch.from_numpy(img).to(device)
|
| 80 |
+
img = img.half() if half else img.float()
|
| 81 |
+
img /= 255.0
|
| 82 |
+
if img.ndimension() == 3:
|
| 83 |
+
img = img.unsqueeze(0)
|
| 84 |
+
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
pred = model(img)[0]
|
| 87 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres)
|
| 88 |
+
|
| 89 |
+
for i, det in enumerate(pred):
|
| 90 |
+
p = Path(path)
|
| 91 |
+
save_path = str(save_dir / p.name.replace('.mp4', '_output.mp4'))
|
| 92 |
+
im0 = im0s
|
| 93 |
+
|
| 94 |
+
if len(det):
|
| 95 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
| 96 |
+
item_boxes, scanner_data, phone_boxes = [], [], []
|
| 97 |
+
curr_scanner_boxes = []
|
| 98 |
+
|
| 99 |
+
for *xyxy, conf, cls in det:
|
| 100 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
| 101 |
+
class_name = names[int(cls)]
|
| 102 |
+
color = colors[int(cls)]
|
| 103 |
+
if class_name.lower() == "item":
|
| 104 |
+
item_boxes.append([x1, y1, x2, y2])
|
| 105 |
+
elif class_name.lower() == "phone":
|
| 106 |
+
phone_boxes.append([x1, y1, x2, y2])
|
| 107 |
+
elif class_name.lower() == "scanner":
|
| 108 |
+
curr_scanner_boxes.append([x1, y1, x2, y2])
|
| 109 |
+
plot_one_box(xyxy, im0, label=class_name, color=color, line_thickness=2)
|
| 110 |
+
|
| 111 |
+
new_prev_centroids = {}
|
| 112 |
+
if prev_centroids and curr_scanner_boxes:
|
| 113 |
+
for curr_box in curr_scanner_boxes:
|
| 114 |
+
curr_centroid = ((curr_box[0] + curr_box[2]) / 2, (curr_box[1] + curr_box[3]) / 2)
|
| 115 |
+
best_match_id = min(prev_centroids.keys(),
|
| 116 |
+
key=lambda k: np.sqrt((curr_centroid[0] - prev_centroids[k][0])**2 +
|
| 117 |
+
(curr_centroid[1] - prev_centroids[k][1])**2),
|
| 118 |
+
default=None)
|
| 119 |
+
if best_match_id is not None and np.sqrt((curr_centroid[0] - prev_centroids[best_match_id][0])**2 +
|
| 120 |
+
(curr_centroid[1] - prev_centroids[best_match_id][1])**2) < 50:
|
| 121 |
+
scanner_id = best_match_id
|
| 122 |
+
else:
|
| 123 |
+
scanner_id = scanner_id_counter
|
| 124 |
+
scanner_id_counter += 1
|
| 125 |
+
is_moving = is_scanner_moving(prev_centroids, curr_box, scanner_id)
|
| 126 |
+
movement_status = "Scanning" if is_moving else "Idle"
|
| 127 |
+
scanner_data.append([curr_box, movement_status, scanner_id])
|
| 128 |
+
new_prev_centroids[scanner_id] = curr_centroid
|
| 129 |
+
elif curr_scanner_boxes:
|
| 130 |
+
for curr_box in curr_scanner_boxes:
|
| 131 |
+
scanner_id = scanner_id_counter
|
| 132 |
+
scanner_id_counter += 1
|
| 133 |
+
movement_status = "Idle"
|
| 134 |
+
curr_centroid = ((curr_box[0] + curr_box[2]) / 2, (curr_box[1] + curr_box[3]) / 2)
|
| 135 |
+
scanner_data.append([curr_box, movement_status, scanner_id])
|
| 136 |
+
new_prev_centroids[scanner_id] = curr_centroid
|
| 137 |
+
|
| 138 |
+
prev_centroids = new_prev_centroids
|
| 139 |
+
|
| 140 |
+
for scanner_box, movement_status, scanner_id in scanner_data:
|
| 141 |
+
x1, y1, x2, y2 = scanner_box
|
| 142 |
+
label = f"scanner {movement_status} (ID: {scanner_id})"
|
| 143 |
+
plot_one_box([x1, y1, x2, y2], im0, label=label, color=colors[names.index("scanner")], line_thickness=2)
|
| 144 |
+
|
| 145 |
+
product_scanning_status = ""
|
| 146 |
+
payment_scanning_status = ""
|
| 147 |
+
for scanner_box, movement_status, _ in scanner_data:
|
| 148 |
+
for item_box in item_boxes:
|
| 149 |
+
if movement_status == "Scanning" and compute_iou(scanner_box, item_box) > 0.1:
|
| 150 |
+
product_scanning_status = "Product scanning is finished"
|
| 151 |
+
for phone_box in phone_boxes:
|
| 152 |
+
if movement_status == "Scanning" and compute_iou(scanner_box, phone_box) > 0.1:
|
| 153 |
+
payment_scanning_status = "Payment scanning is finished"
|
| 154 |
+
|
| 155 |
+
if product_scanning_status:
|
| 156 |
+
cv2.putText(im0, product_scanning_status, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, colors[names.index("scanner")], 2)
|
| 157 |
+
if payment_scanning_status:
|
| 158 |
+
cv2.putText(im0, payment_scanning_status, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.9, colors[names.index("scanner")], 2)
|
| 159 |
+
|
| 160 |
+
if vid_path != save_path:
|
| 161 |
+
vid_path = save_path
|
| 162 |
+
if isinstance(vid_writer, cv2.VideoWriter):
|
| 163 |
+
vid_writer.release()
|
| 164 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS) if vid_cap else 30
|
| 165 |
+
w, h = im0.shape[1], im0.shape[0]
|
| 166 |
+
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
| 167 |
+
vid_writer.write(im0)
|
| 168 |
+
|
| 169 |
+
if isinstance(vid_writer, cv2.VideoWriter):
|
| 170 |
+
vid_writer.release()
|
| 171 |
+
|
| 172 |
+
# Convert to H.264 for browser compatibility
|
| 173 |
+
output_h264 = str(Path(save_path).with_name(f"{Path(save_path).stem}_h264.mp4"))
|
| 174 |
+
try:
|
| 175 |
+
stream = ffmpeg.input(save_path)
|
| 176 |
+
stream = ffmpeg.output(stream, output_h264, vcodec='libx264', acodec='aac', format='mp4', pix_fmt='yuv420p')
|
| 177 |
+
ffmpeg.run(stream, overwrite_output=True)
|
| 178 |
+
os.remove(save_path) # Remove original
|
| 179 |
+
return output_h264
|
| 180 |
+
except ffmpeg.Error as e:
|
| 181 |
+
print(f"FFmpeg error: {e.stderr.decode()}")
|
| 182 |
+
return save_path
|
| 183 |
+
|
| 184 |
+
def gradio_interface(video, conf_thres, iou_thres):
|
| 185 |
+
weights = "/home/myominhtet/Desktop/deepsortfromscratch/yolov7/best.pt"
|
| 186 |
+
img_size = 640
|
| 187 |
+
video = convert_to_h264(video)
|
| 188 |
+
output_video = detect_video(video, weights, conf_thres, iou_thres, img_size)
|
| 189 |
+
return output_video if output_video else "Error processing video."
|
| 190 |
+
|
| 191 |
+
# Create Gradio interface
|
| 192 |
+
interface = gr.Interface(
|
| 193 |
+
fn=gradio_interface,
|
| 194 |
+
inputs=[
|
| 195 |
+
gr.Video(label="Upload Video"),
|
| 196 |
+
gr.Slider(0, 1, value=0.25, step=0.05, label="Confidence Threshold"),
|
| 197 |
+
gr.Slider(0, 1, value=0.45, step=0.05, label="IoU Threshold"),
|
| 198 |
+
],
|
| 199 |
+
outputs=gr.Video(label="Processed Video"),
|
| 200 |
+
title="YOLO Video Detection",
|
| 201 |
+
description="Upload a video to run YOLO detection with custom parameters."
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
# Initialize FastAPI app
|
| 205 |
+
app = FastAPI()
|
| 206 |
+
|
| 207 |
+
# Mount Gradio interface to FastAPI
|
| 208 |
+
app = gr.mount_gradio_app(app, interface, path="/gradio")
|
| 209 |
+
|
| 210 |
+
# Optional: Add a simple root endpoint
|
| 211 |
+
@app.get("/", response_class=HTMLResponse)
|
| 212 |
+
async def root():
|
| 213 |
+
return """
|
| 214 |
+
<html>
|
| 215 |
+
<body>
|
| 216 |
+
<h1>Welcome to YOLO Video Detection API</h1>
|
| 217 |
+
<p>Visit <a href="/gradio">/gradio</a> to access the interactive UI.</p>
|
| 218 |
+
</body>
|
| 219 |
+
</html>
|
| 220 |
+
"""
|
| 221 |
+
|
| 222 |
+
if __name__ == "__main__":
|
| 223 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
models/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# init
|
models/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (179 Bytes). View file
|
|
|