|
import argparse |
|
import sys |
|
import time |
|
import warnings |
|
|
|
sys.path.append('./') |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.mobile_optimizer import optimize_for_mobile |
|
|
|
import models |
|
from models.experimental import attempt_load, End2End |
|
from utils.activations import Hardswish, SiLU |
|
from utils.general import set_logging, check_img_size |
|
from utils.torch_utils import select_device |
|
from utils.add_nms import RegisterNMS |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path') |
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') |
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') |
|
parser.add_argument('--dynamic-batch', action='store_true', help='dynamic batch onnx for tensorrt and onnx-runtime') |
|
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid') |
|
parser.add_argument('--end2end', action='store_true', help='export end2end onnx') |
|
parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms') |
|
parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images') |
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS') |
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS') |
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--simplify', action='store_true', help='simplify onnx model') |
|
parser.add_argument('--include-nms', action='store_true', help='export end2end onnx') |
|
parser.add_argument('--fp16', action='store_true', help='CoreML FP16 half-precision export') |
|
parser.add_argument('--int8', action='store_true', help='CoreML INT8 quantization') |
|
opt = parser.parse_args() |
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 |
|
opt.dynamic = opt.dynamic and not opt.end2end |
|
opt.dynamic = False if opt.dynamic_batch else opt.dynamic |
|
print(opt) |
|
set_logging() |
|
t = time.time() |
|
|
|
|
|
device = select_device(opt.device) |
|
model = attempt_load(opt.weights, map_location=device) |
|
labels = model.names |
|
|
|
|
|
gs = int(max(model.stride)) |
|
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] |
|
|
|
|
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) |
|
|
|
|
|
for k, m in model.named_modules(): |
|
m._non_persistent_buffers_set = set() |
|
if isinstance(m, models.common.Conv): |
|
if isinstance(m.act, nn.Hardswish): |
|
m.act = Hardswish() |
|
elif isinstance(m.act, nn.SiLU): |
|
m.act = SiLU() |
|
|
|
|
|
model.model[-1].export = not opt.grid |
|
y = model(img) |
|
if opt.include_nms: |
|
model.model[-1].include_nms = True |
|
y = None |
|
|
|
|
|
try: |
|
print('\nStarting TorchScript export with torch %s...' % torch.__version__) |
|
f = opt.weights.replace('.pt', '.torchscript.pt') |
|
ts = torch.jit.trace(model, img, strict=False) |
|
ts.save(f) |
|
print('TorchScript export success, saved as %s' % f) |
|
except Exception as e: |
|
print('TorchScript export failure: %s' % e) |
|
|
|
|
|
try: |
|
import coremltools as ct |
|
|
|
print('\nStarting CoreML export with coremltools %s...' % ct.__version__) |
|
|
|
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) |
|
bits, mode = (8, 'kmeans_lut') if opt.int8 else (16, 'linear') if opt.fp16 else (32, None) |
|
if bits < 32: |
|
if sys.platform.lower() == 'darwin': |
|
with warnings.catch_warnings(): |
|
warnings.filterwarnings("ignore", category=DeprecationWarning) |
|
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) |
|
else: |
|
print('quantization only supported on macOS, skipping...') |
|
|
|
f = opt.weights.replace('.pt', '.mlmodel') |
|
ct_model.save(f) |
|
print('CoreML export success, saved as %s' % f) |
|
except Exception as e: |
|
print('CoreML export failure: %s' % e) |
|
|
|
|
|
try: |
|
print('\nStarting TorchScript-Lite export with torch %s...' % torch.__version__) |
|
f = opt.weights.replace('.pt', '.torchscript.ptl') |
|
tsl = torch.jit.trace(model, img, strict=False) |
|
tsl = optimize_for_mobile(tsl) |
|
tsl._save_for_lite_interpreter(f) |
|
print('TorchScript-Lite export success, saved as %s' % f) |
|
except Exception as e: |
|
print('TorchScript-Lite export failure: %s' % e) |
|
|
|
|
|
try: |
|
import onnx |
|
|
|
print('\nStarting ONNX export with onnx %s...' % onnx.__version__) |
|
f = opt.weights.replace('.pt', '.onnx') |
|
model.eval() |
|
output_names = ['classes', 'boxes'] if y is None else ['output'] |
|
dynamic_axes = None |
|
if opt.dynamic: |
|
dynamic_axes = {'images': {0: 'batch', 2: 'height', 3: 'width'}, |
|
'output': {0: 'batch', 2: 'y', 3: 'x'}} |
|
if opt.dynamic_batch: |
|
opt.batch_size = 'batch' |
|
dynamic_axes = { |
|
'images': { |
|
0: 'batch', |
|
}, } |
|
if opt.end2end and opt.max_wh is None: |
|
output_axes = { |
|
'num_dets': {0: 'batch'}, |
|
'det_boxes': {0: 'batch'}, |
|
'det_scores': {0: 'batch'}, |
|
'det_classes': {0: 'batch'}, |
|
} |
|
else: |
|
output_axes = { |
|
'output': {0: 'batch'}, |
|
} |
|
dynamic_axes.update(output_axes) |
|
if opt.grid: |
|
if opt.end2end: |
|
print('\nStarting export end2end onnx model for %s...' % 'TensorRT' if opt.max_wh is None else 'onnxruntime') |
|
model = End2End(model,opt.topk_all,opt.iou_thres,opt.conf_thres,opt.max_wh,device,len(labels)) |
|
if opt.end2end and opt.max_wh is None: |
|
output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes'] |
|
shapes = [opt.batch_size, 1, opt.batch_size, opt.topk_all, 4, |
|
opt.batch_size, opt.topk_all, opt.batch_size, opt.topk_all] |
|
else: |
|
output_names = ['output'] |
|
else: |
|
model.model[-1].concat = True |
|
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], |
|
output_names=output_names, |
|
dynamic_axes=dynamic_axes) |
|
|
|
|
|
onnx_model = onnx.load(f) |
|
onnx.checker.check_model(onnx_model) |
|
|
|
if opt.end2end and opt.max_wh is None: |
|
for i in onnx_model.graph.output: |
|
for j in i.type.tensor_type.shape.dim: |
|
j.dim_param = str(shapes.pop(0)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if opt.simplify: |
|
try: |
|
import onnxsim |
|
|
|
print('\nStarting to simplify ONNX...') |
|
onnx_model, check = onnxsim.simplify(onnx_model) |
|
assert check, 'assert check failed' |
|
except Exception as e: |
|
print(f'Simplifier failure: {e}') |
|
|
|
|
|
onnx.save(onnx_model,f) |
|
print('ONNX export success, saved as %s' % f) |
|
|
|
if opt.include_nms: |
|
print('Registering NMS plugin for ONNX...') |
|
mo = RegisterNMS(f) |
|
mo.register_nms() |
|
mo.save(f) |
|
|
|
except Exception as e: |
|
print('ONNX export failure: %s' % e) |
|
|
|
|
|
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t)) |
|
|