import os import cv2 import numpy as np import torch import torch.backends.cudnn as cudnn from models_depth.model import EVPDepth from configs.train_options import TrainOptions from configs.test_options import TestOptions import glob import utils import torchvision.transforms as transforms from utils_depth.misc import colorize from PIL import Image import torch.nn.functional as F def main(): opt = TestOptions().initialize() opt.add_argument('--img_path', type=str) args = opt.parse_args() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = EVPDepth(args=args, caption_aggregation=True) cudnn.benchmark = True model.to(device) model_weight = torch.load(args.ckpt_dir)['model'] if 'module' in next(iter(model_weight.items()))[0]: model_weight = OrderedDict((k[7:], v) for k, v in model_weight.items()) model.load_state_dict(model_weight, strict=False) model.eval() img_path = args.img_path image = cv2.imread(img_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) transform = transforms.ToTensor() image = transform(image).unsqueeze(0).to(device) shape = image.shape image = torch.nn.functional.interpolate(image, (440,480), mode='bilinear', align_corners=True) image = F.pad(image, (0, 0, 40, 0)) with torch.no_grad(): pred = model(image)['pred_d'] pred = pred[:,:,40:,:] pred = torch.nn.functional.interpolate(pred, shape[2:], mode='bilinear', align_corners=True) pred_d_numpy = pred.squeeze().cpu().numpy() pred_d_color, _, _ = colorize(pred_d_numpy, cmap='gray_r') Image.fromarray(pred_d_color).save('res.png') return 0 if __name__ == '__main__': main()