model: base_learning_rate: 4.5e-6 target: ldm.models.autoencoder.AutoencoderKL params: monitor: "val/rec_loss" embed_dim: 16 lossconfig: target: ldm.modules.losses.LPIPSWithDiscriminator params: disc_start: 50001 kl_weight: 0.000001 disc_weight: 0.5 ddconfig: double_z: True z_channels: 16 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: [ 1,1,2,2,4] # num_down = len(ch_mult)-1 num_res_blocks: 2 attn_resolutions: [16] dropout: 0.0 data: target: main.DataModuleFromConfig params: batch_size: 12 wrap: True train: target: ldm.data.imagenet.ImageNetSRTrain params: size: 256 degradation: pil_nearest validation: target: ldm.data.imagenet.ImageNetSRValidation params: size: 256 degradation: pil_nearest lightning: callbacks: image_logger: target: main.ImageLogger params: batch_frequency: 1000 max_images: 8 increase_log_steps: True trainer: benchmark: True accumulate_grad_batches: 2