import os, sys import numpy as np import scann import argparse import glob from multiprocessing import cpu_count from tqdm import tqdm from ldm.util import parallel_data_prefetch def search_bruteforce(searcher): return searcher.score_brute_force().build() def search_partioned_ah(searcher, dims_per_block, aiq_threshold, reorder_k, partioning_trainsize, num_leaves, num_leaves_to_search): return searcher.tree(num_leaves=num_leaves, num_leaves_to_search=num_leaves_to_search, training_sample_size=partioning_trainsize). \ score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(reorder_k).build() def search_ah(searcher, dims_per_block, aiq_threshold, reorder_k): return searcher.score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder( reorder_k).build() def load_datapool(dpath): def load_single_file(saved_embeddings): compressed = np.load(saved_embeddings) database = {key: compressed[key] for key in compressed.files} return database def load_multi_files(data_archive): database = {key: [] for key in data_archive[0].files} for d in tqdm(data_archive, desc=f'Loading datapool from {len(data_archive)} individual files.'): for key in d.files: database[key].append(d[key]) return database print(f'Load saved patch embedding from "{dpath}"') file_content = glob.glob(os.path.join(dpath, '*.npz')) if len(file_content) == 1: data_pool = load_single_file(file_content[0]) elif len(file_content) > 1: data = [np.load(f) for f in file_content] prefetched_data = parallel_data_prefetch(load_multi_files, data, n_proc=min(len(data), cpu_count()), target_data_type='dict') data_pool = {key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in prefetched_data[0].keys()} else: raise ValueError(f'No npz-files in specified path "{dpath}" is this directory existing?') print(f'Finished loading of retrieval database of length {data_pool["embedding"].shape[0]}.') return data_pool def train_searcher(opt, metric='dot_product', partioning_trainsize=None, reorder_k=None, # todo tune aiq_thld=0.2, dims_per_block=2, num_leaves=None, num_leaves_to_search=None,): data_pool = load_datapool(opt.database) k = opt.knn if not reorder_k: reorder_k = 2 * k # normalize # embeddings = searcher = scann.scann_ops_pybind.builder(data_pool['embedding'] / np.linalg.norm(data_pool['embedding'], axis=1)[:, np.newaxis], k, metric) pool_size = data_pool['embedding'].shape[0] print(*(['#'] * 100)) print('Initializing scaNN searcher with the following values:') print(f'k: {k}') print(f'metric: {metric}') print(f'reorder_k: {reorder_k}') print(f'anisotropic_quantization_threshold: {aiq_thld}') print(f'dims_per_block: {dims_per_block}') print(*(['#'] * 100)) print('Start training searcher....') print(f'N samples in pool is {pool_size}') # this reflects the recommended design choices proposed at # https://github.com/google-research/google-research/blob/aca5f2e44e301af172590bb8e65711f0c9ee0cfd/scann/docs/algorithms.md if pool_size < 2e4: print('Using brute force search.') searcher = search_bruteforce(searcher) elif 2e4 <= pool_size and pool_size < 1e5: print('Using asymmetric hashing search and reordering.') searcher = search_ah(searcher, dims_per_block, aiq_thld, reorder_k) else: print('Using using partioning, asymmetric hashing search and reordering.') if not partioning_trainsize: partioning_trainsize = data_pool['embedding'].shape[0] // 10 if not num_leaves: num_leaves = int(np.sqrt(pool_size)) if not num_leaves_to_search: num_leaves_to_search = max(num_leaves // 20, 1) print('Partitioning params:') print(f'num_leaves: {num_leaves}') print(f'num_leaves_to_search: {num_leaves_to_search}') # self.searcher = self.search_ah(searcher, dims_per_block, aiq_thld, reorder_k) searcher = search_partioned_ah(searcher, dims_per_block, aiq_thld, reorder_k, partioning_trainsize, num_leaves, num_leaves_to_search) print('Finish training searcher') searcher_savedir = opt.target_path os.makedirs(searcher_savedir, exist_ok=True) searcher.serialize(searcher_savedir) print(f'Saved trained searcher under "{searcher_savedir}"') if __name__ == '__main__': sys.path.append(os.getcwd()) parser = argparse.ArgumentParser() parser.add_argument('--database', '-d', default='data/rdm/retrieval_databases/openimages', type=str, help='path to folder containing the clip feature of the database') parser.add_argument('--target_path', '-t', default='data/rdm/searchers/openimages', type=str, help='path to the target folder where the searcher shall be stored.') parser.add_argument('--knn', '-k', default=20, type=int, help='number of nearest neighbors, for which the searcher shall be optimized') opt, _ = parser.parse_known_args() train_searcher(opt,)