import gradio as gr import time import numpy as np from scipy.ndimage import gaussian_filter import matplotlib.pyplot as plt from skimage.data import coins from skimage.transform import rescale from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering # load the coins as a numpy array orig_coins = coins() # Resize it to 20% of the original size to speed up the processing # Applying a Gaussian filter for smoothing prior to down-scaling # reduces aliasing artifacts. smoothened_coins = gaussian_filter(orig_coins, sigma=2) rescaled_coins = rescale(smoothened_coins, 0.2, mode="reflect", anti_aliasing=False) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(rescaled_coins) # Take a decreasing function of the gradient: an exponential # The smaller beta is, the more independent the segmentation is of the # actual image. For beta=1, the segmentation is close to a voronoi beta = 10 eps = 1e-6 graph.data = np.exp(-beta * graph.data / graph.data.std()) + eps # The number of segmented regions to display needs to be chosen manually. # The current version of 'spectral_clustering' does not support determining # the number of good quality clusters automatically. n_regions = 26 # Computing a few extra eigenvectors may speed up the eigen_solver. # The spectral clustering quality may also benetif from requesting # extra regions for segmentation. n_regions_plus = 3 #Function for retrieving the plot def getClusteringPlot(algorithm): t0 = time.time() labels = spectral_clustering( graph, n_clusters=(n_regions + n_regions_plus), eigen_tol=1e-7, assign_labels=algorithm, random_state=42, ) t1 = time.time() labels = labels.reshape(rescaled_coins.shape) plt.figure(figsize=(5, 5)) plt.imshow(rescaled_coins, cmap=plt.cm.gray) plt.xticks(()) plt.yticks(()) title = "Spectral clustering: %s, %.2fs" % (algorithm, (t1 - t0)) print(title) plt.title(title) for l in range(n_regions): colors = [plt.cm.nipy_spectral((l + 4) / float(n_regions + 4))] plt.contour(labels == l, colors=colors) # To view individual segments as appear comment in plt.pause(0.5) return plt import gradio as gr def welcome(name): return f"Welcome to Gradio, {name}!" with gr.Blocks() as demo: gr.Markdown( """ # Segmenting the picture of greek coins in regions 🪙 An application of spectral clustering. ![Image of coins](coins.jpeg "a title") """) inp = gr.Radio(["kmeans", "discretize", "cluster_qr"], label="Solver", info="Choose a clustering algorithm", value="kmeans") plot = gr.Plot(label="Plot") inp.change(getClusteringPlot, inputs=inp, outputs=[plot]) demo.load(getClusteringPlot, inputs=[inp], outputs=[plot]) if __name__ == "main": demo.launch()