import subprocess subprocess.run(["pip", "install", "gradio", "--upgrade"]) subprocess.run(["pip", "install", "transformers"]) subprocess.run(["pip", "install", "torchaudio", "--upgrade"]) import numpy as np import gradio as gr from transformers import WhisperProcessor, WhisperForConditionalGeneration # Load Whisper ASR model and processor model_name = "openai/whisper-small" processor = WhisperProcessor.from_pretrained(model_name, sampling_rate=44_100) model = WhisperForConditionalGeneration.from_pretrained(model_name) forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe") def transcribe_audio(input_audio): if isinstance(input_audio, int): # Handle the case where input_audio is an integer (error fallback) input_audio_np = np.array([0.0]) # You can adjust this default value else: input_audio_np = np.array(input_audio.data) input_features = processor(input_audio_np, return_tensors="pt").input_features # Generate token ids predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) # Decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription[0] audio_input = gr.Audio(sources=["microphone"]) gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()