James McCool
commited on
Commit
·
7b2935a
1
Parent(s):
b40a05d
Enhance reassess_edge function by adding max_salary parameter to improve salary handling in the predict_dupes call, ensuring more accurate edge reassessment.
Browse files
global_func/reassess_edge.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
from global_func.predict_dupes import predict_dupes
|
| 3 |
|
| 4 |
-
def reassess_edge(modified_frame: pd.DataFrame, base_frame: pd.DataFrame, maps_dict: dict, site_var: str, type_var: str, Contest_Size: int, strength_var: str, sport_var: str) -> pd.DataFrame:
|
| 5 |
"""
|
| 6 |
Reassess edge by concatenating modified frame with base frame, running predict_dupes,
|
| 7 |
and then extracting the first N rows (where N is the length of modified_frame).
|
|
@@ -15,6 +15,7 @@ def reassess_edge(modified_frame: pd.DataFrame, base_frame: pd.DataFrame, maps_d
|
|
| 15 |
Contest_Size: Contest size for calculations
|
| 16 |
strength_var: Strength variable (Weak/Average/Sharp)
|
| 17 |
sport_var: Sport variable
|
|
|
|
| 18 |
|
| 19 |
Returns:
|
| 20 |
DataFrame: Updated modified_frame with recalculated metrics
|
|
@@ -26,7 +27,7 @@ def reassess_edge(modified_frame: pd.DataFrame, base_frame: pd.DataFrame, maps_d
|
|
| 26 |
combined_frame = pd.concat([modified_frame, base_frame], ignore_index=True)
|
| 27 |
|
| 28 |
# Run predict_dupes on the combined frame
|
| 29 |
-
updated_combined_frame = predict_dupes(combined_frame, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var)
|
| 30 |
|
| 31 |
# Extract the first N rows (which correspond to our modified frame)
|
| 32 |
result_frame = updated_combined_frame.head(num_modified_rows).copy()
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
from global_func.predict_dupes import predict_dupes
|
| 3 |
|
| 4 |
+
def reassess_edge(modified_frame: pd.DataFrame, base_frame: pd.DataFrame, maps_dict: dict, site_var: str, type_var: str, Contest_Size: int, strength_var: str, sport_var: str, max_salary: int) -> pd.DataFrame:
|
| 5 |
"""
|
| 6 |
Reassess edge by concatenating modified frame with base frame, running predict_dupes,
|
| 7 |
and then extracting the first N rows (where N is the length of modified_frame).
|
|
|
|
| 15 |
Contest_Size: Contest size for calculations
|
| 16 |
strength_var: Strength variable (Weak/Average/Sharp)
|
| 17 |
sport_var: Sport variable
|
| 18 |
+
max_salary: Maximum salary for the contest
|
| 19 |
|
| 20 |
Returns:
|
| 21 |
DataFrame: Updated modified_frame with recalculated metrics
|
|
|
|
| 27 |
combined_frame = pd.concat([modified_frame, base_frame], ignore_index=True)
|
| 28 |
|
| 29 |
# Run predict_dupes on the combined frame
|
| 30 |
+
updated_combined_frame = predict_dupes(combined_frame, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var, max_salary)
|
| 31 |
|
| 32 |
# Extract the first N rows (which correspond to our modified frame)
|
| 33 |
result_frame = updated_combined_frame.head(num_modified_rows).copy()
|