import gradio as gr from gradio_rich_textbox import RichTextbox from PIL import Image from surya.ocr import run_ocr from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor from surya.model.recognition.model import load_model as load_rec_model from surya.model.recognition.processor import load_processor as load_rec_processor from lang_list import TEXT_SOURCE_LANGUAGE_NAMES , LANGUAGE_NAME_TO_CODE , text_source_language_codes from gradio_client import Client from dotenv import load_dotenv import requests from io import BytesIO import cohere import os import re import pandas as pd import pydub from pydub import AudioSegment from pydub.utils import make_chunks from pathlib import Path import hashlib title = "# Welcome to AyaTonic" description = "Learn a New Language With Aya" # Load environment variables load_dotenv() COHERE_API_KEY = os.getenv('CO_API_KEY') SEAMLESSM4T = os.getenv('SEAMLESSM4T') df = pd.read_csv("lang_list.csv") choices = df["name"].to_list() inputlanguage = "" producetext = "\n\nProduce a complete expositional blog post in {target_language} based on the above :" formatinputstring = "\n\nthe above text is a learning aid. you must use rich text format to rewrite the above and add 1 . a red color tags for nouns 2. a blue color tag for verbs 3. a green color tag for adjectives and adverbs:" translatetextinst = "\n\nthe above text is a learning aid. you must use markdown format to translate the above into {inputlanguage} :'" # Regular expression patterns for each color patterns = { "red": r'(.*?)', "blue": r'(.*?)', "green": r'(.*?)', } # Dictionaries to hold the matches matches = { "red": [], "blue": [], "green": [], } co = cohere.Client(COHERE_API_KEY) audio_client = Client(SEAMLESSM4T) def get_language_code(language_name): """ Extracts the first two letters of the language code based on the language name. """ try: code = df.loc[df['name'].str.lower() == language_name.lower(), 'code'].values[0] return code except IndexError: print(f"Language name '{language_name}' not found.") return None def translate_text(text, inputlanguage, target_language): """ Translates text. """ # Ensure you format the instruction string within the function body instructions = translatetextinst.format(inputlanguage=inputlanguage) producetext_formatted = producetext.format(target_language=target_language) prompt = f"{text}{producetext_formatted}\n{instructions}" response = co.generate( model='c4ai-aya', prompt=prompt, max_tokens=2986, temperature=0.6, k=0, stop_sequences=[], return_likelihoods='NONE' ) return response.generations[0].text class LongAudioProcessor: def __init__(self, audio_client, api_key=None): self.client = audio_client self.process_audio_to_text = process_audio_to_text self.api_key = api_key def process_long_audio(self, audio_path, inputlanguage, outputlanguage, chunk_length_ms=20000): """ Process audio files longer than 29 seconds by chunking them into smaller segments. """ audio = AudioSegment.from_file(audio_path) chunks = make_chunks(audio, chunk_length_ms) full_text = "" for i, chunk in enumerate(chunks): chunk_name = f"chunk{i}.wav" with open(chunk_name, 'wb') as file: chunk.export(file, format="wav") try: result = self.process_audio_to_text(chunk_name, inputlanguage=inputlanguage, outputlanguage=outputlanguage) full_text += " " + result.strip() except Exception as e: print(f"Error processing {chunk_name}: {e}") finally: if os.path.exists(chunk_name): os.remove(chunk_name) return full_text.strip() class TaggedPhraseExtractor: def __init__(self, text=''): self.text = text self.patterns = patterns def set_text(self, text): """Set the text to search within.""" self.text = text def add_pattern(self, color, pattern): """Add a new color and its associated pattern.""" self.patterns[color] = pattern def extract_phrases(self): """Extract phrases for all colors and patterns added, including the three longest phrases.""" matches = {} for color, pattern in self.patterns.items(): found_phrases = re.findall(pattern, self.text) sorted_phrases = sorted(found_phrases, key=len, reverse=True) matches[color] = sorted_phrases[:3] return matches def print_phrases(self): """Extract phrases and print them, including the three longest phrases.""" matches = self.extract_phrases() for color, data in matches.items(): print(f"Phrases with color {color}:") for phrase in data['all_phrases']: print(f"- {phrase}") print(f"\nThree longest phrases for color {color}:") for phrase in data['top_three_longest']: print(f"- {phrase}") print() def process_audio_to_text(audio_path, inputlanguage="English", outputlanguage="English"): """ Convert audio input to text using the Gradio client. """ audio_client = Client(SEAMLESSM4T) result = audio_client.predict( audio_path, inputlanguage, outputlanguage, api_name="/s2tt" ) print("Audio Result: ", result) return result[0] def process_text_to_audio(text, translatefrom="English", translateto="English", filename_prefix="audio"): """ Convert text input to audio using the Gradio client. Ensure the audio file is correctly saved and returned as a file path or binary data. """ try: # Generate audio from text audio_response = audio_client.predict( text, translatefrom, translateto, api_name="/t2st" ) if "error" in audio_response: raise ValueError(f"API Error: {audio_response['error']}") # Assuming audio_response[0] is a URL or file path to the generated audio audio_url = audio_response[0] response = requests.get(audio_url) audio_data = response.content # This should be binary data # Generate a unique filename based on the text's hash text_hash = hashlib.md5(text.encode('utf-8')).hexdigest() filename = f"{filename_prefix}_{text_hash}.wav" # Save the audio data to a new file new_audio_file_path = save_audio_data_to_file(audio_data, filename=filename) # Return the path to the saved audio file return new_audio_file_path except Exception as e: print(f"Error processing text to audio: {e}") return None def save_audio_data_to_file(audio_data, directory="audio_files", filename="output_audio.wav"): """ Save audio data to a file and return the file path. """ os.makedirs(directory, exist_ok=True) file_path = os.path.join(directory, filename) with open(file_path, 'wb') as file: file.write(audio_data) return file_path # Ensure the function that reads the audio file checks if the path is a file def read_audio_file(file_path): """ Read and return the audio file content if the path is a file. """ if os.path.isfile(file_path): with open(file_path, 'rb') as file: return file.read() else: raise ValueError(f"Expected a file path, got a directory: {file_path}") def initialize_ocr_models(): """ Load the detection and recognition models along with their processors. """ det_processor, det_model = load_det_processor(), load_det_model() rec_model, rec_processor = load_rec_model(), load_rec_processor() return det_processor, det_model, rec_model, rec_processor class OCRProcessor: def __init__(self, lang_code=["en"]): self.lang_code = lang_code self.det_processor, self.det_model, self.rec_model, self.rec_processor = initialize_ocr_models() def process_image(self, image): """ Process a PIL image and return the OCR text. """ predictions = run_ocr([image], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor) return predictions[0] def process_pdf(self, pdf_path): """ Process a PDF file and return the OCR text. """ predictions = run_ocr([pdf_path], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor) return predictions[0] def process_input(image=None, file=None, audio=None, text="", translateto = "English", translatefrom = "English" ): lang_code = get_language_code(translatefrom) ocr_processor = OCRProcessor(lang_code) final_text = text print("Image :", image) if image is not None: ocr_prediction = ocr_processor.process_image(image) for idx in range(len((list(ocr_prediction)[0][1]))): final_text += " " final_text += list((list(ocr_prediction)[0][1])[idx])[1][1] if file is not None: if file.name.lower().endswith(('.png', '.jpg', '.jpeg')): pil_image = Image.open(file) ocr_prediction = ocr_processor.process_image(pil_image) for idx in range(len((list(ocr_prediction)[0][1]))): final_text += " " final_text += list((list(ocr_prediction)[0][1])[idx])[1][1] elif file.name.lower().endswith('.pdf'): ocr_prediction = ocr_processor.process_pdf(file.name) for idx in range(len((list(ocr_prediction)[0][1]))): final_text += " " final_text += list((list(ocr_prediction)[0][1])[idx])[1][1] else: final_text += "\nUnsupported file type." print("OCR Text: ", final_text) if audio is not None: long_audio_processor = LongAudioProcessor(audio_client) audio_text = long_audio_processor.process_long_audio(audio, inputlanguage=translatefrom, outputlanguage=translateto) final_text += "\n" + audio_text final_text_with_producetext = final_text + producetext.format(target_language=translateto) response = co.generate( model='c4ai-aya', prompt=final_text_with_producetext, max_tokens=1024, temperature=0.5 ) # add graceful handling for errors (overflow) generated_text = response.generations[0].text print("Generated Text: ", generated_text) generated_text_with_format = generated_text + "\n" + formatinputstring response = co.generate( model='command-nightly', prompt=generated_text_with_format, max_tokens=4000, temperature=0.5 ) processed_text = response.generations[0].text audio_output = process_text_to_audio(processed_text, translateto, translateto) extractor = TaggedPhraseExtractor(final_text) matches = extractor.extract_phrases() top_phrases = [] for color, phrases in matches.items(): top_phrases.extend(phrases) while len(top_phrases) < 3: top_phrases.append("") audio_outputs = [] translations = [] for phrase in top_phrases: if phrase: translated_phrase = translate_text(phrase, translatefrom=translatefrom, translateto=translateto) translations.append(translated_phrase) target_audio = process_text_to_audio(phrase, translatefrom=translateto, translateto=translateto) native_audio = process_text_to_audio(translated_phrase, translatefrom=translatefrom, translateto=translatefrom) audio_outputs.append((target_audio, native_audio)) else: translations.append("") audio_outputs.append(("", "")) return final_text, audio_output, top_phrases, translations, audio_outputs # Define the inputs and outputs for the Gradio Interface inputs = [ gr.Dropdown(choices=choices, label="Your Native Language"), gr.Dropdown(choices=choices, label="Language To Learn"), gr.Audio(sources="microphone", type="filepath", label="Mic Input"), gr.Image(type="pil", label="Camera Input"), gr.Textbox(lines=2, label="Text Input"), gr.File(label="File Upload") ] outputs = [ RichTextbox(label="Processed Text"), gr.Audio(label="Audio"), gr.Textbox(label="Focus 1"), gr.Textbox(label="Translated Phrases 1"), gr.Audio(label="Audio Output (Native Language) 1"), gr.Audio(label="Audio Output (Target Language) 1"), gr.Textbox(label="Focus 2"), gr.Textbox(label="Translated Phrases 2"), gr.Audio(label="Audio Output (Native Language) 2"), gr.Audio(label="Audio Output (Target Language) 2"), gr.Textbox(label="Focus 3"), gr.Textbox(label="Translated Phrases 3"), gr.Audio(label="Audio Output (Native Language) 3"), gr.Audio(label="Audio Output (Target Language) 3") ] def update_outputs(inputlanguage, target_language, audio, image, text, file): processed_text, audio_output_path, top_phrases, translations, audio_outputs = process_input( image=image, file=file, audio=audio, text=text, translateto=target_language, translatefrom=inputlanguage ) audio_outputs_components = [(ao[0], ao[1]) for ao in audio_outputs] output_tuple = (processed_text, audio_output_path) for i in range(len(top_phrases)): output_tuple += (top_phrases[i], translations[i]) + audio_outputs_components[i] while len(output_tuple) < 14: output_tuple += ("", "", "", "") return output_tuple def interface_func(inputlanguage, target_language, audio, image, text, file): return update_outputs(inputlanguage, target_language, audio, image, text, file) # Create the Gradio interface iface = gr.Interface(fn=interface_func, inputs=inputs, outputs=outputs, title=title, description=description) if __name__ == "__main__": iface.launch()