import re import os import time import torch import shutil import argparse import gradio as gr from utils import * from config import * from convert import * from transformers import GPT2Config import warnings warnings.filterwarnings("ignore") def get_args(parser): parser.add_argument( "-num_tunes", type=int, default=1, help="the number of independently computed returned tunes", ) parser.add_argument( "-max_patch", type=int, default=128, help="integer to define the maximum length in tokens of each tune", ) parser.add_argument( "-top_p", type=float, default=0.8, help="float to define the tokens that are within the sample operation of text generation", ) parser.add_argument( "-top_k", type=int, default=8, help="integer to define the tokens that are within the sample operation of text generation", ) parser.add_argument( "-temperature", type=float, default=1.2, help="the temperature of the sampling operation", ) parser.add_argument("-seed", type=int, default=None, help="seed for randomstate") parser.add_argument( "-show_control_code", type=bool, default=True, help="whether to show control code", ) args = parser.parse_args() return args def generate_abc(args, region): patchilizer = Patchilizer() patch_config = GPT2Config( num_hidden_layers=PATCH_NUM_LAYERS, max_length=PATCH_LENGTH, max_position_embeddings=PATCH_LENGTH, vocab_size=1, ) char_config = GPT2Config( num_hidden_layers=CHAR_NUM_LAYERS, max_length=PATCH_SIZE, max_position_embeddings=PATCH_SIZE, vocab_size=128, ) model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS) filename = WEIGHT_PATH if os.path.exists(filename): print(f"Weights already exist at '{filename}'. Loading...") else: download() checkpoint = torch.load(filename, map_location=torch.device("cpu")) model.load_state_dict(checkpoint["model"]) model = model.to(device) model.eval() prompt = template(region) tunes = "" num_tunes = args.num_tunes max_patch = args.max_patch top_p = args.top_p top_k = args.top_k temperature = args.temperature seed = args.seed show_control_code = args.show_control_code print(" HYPERPARAMETERS ".center(60, "#"), "\n") args = vars(args) for key in args.keys(): print(f"{key}: {str(args[key])}") print("\n", " OUTPUT TUNES ".center(60, "#")) start_time = time.time() for i in range(num_tunes): title_artist = f"T:{region} Fragment\nC:Generated by AI\n" tune = f"X:{str(i + 1)}\n{title_artist + prompt}" lines = re.split(r"(\n)", tune) tune = "" skip = False for line in lines: if show_control_code or line[:2] not in ["S:", "B:", "E:"]: if not skip: print(line, end="") tune += line skip = False else: skip = True input_patches = torch.tensor( [patchilizer.encode(prompt, add_special_patches=True)[:-1]], device=device ) if tune == "": tokens = None else: prefix = patchilizer.decode(input_patches[0]) remaining_tokens = prompt[len(prefix) :] tokens = torch.tensor( [patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens], device=device, ) while input_patches.shape[1] < max_patch: predicted_patch, seed = model.generate( input_patches, tokens, top_p=top_p, top_k=top_k, temperature=temperature, seed=seed, ) tokens = None if predicted_patch[0] != patchilizer.eos_token_id: next_bar = patchilizer.decode([predicted_patch]) if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]: print(next_bar, end="") tune += next_bar if next_bar == "": break next_bar = remaining_tokens + next_bar remaining_tokens = "" predicted_patch = torch.tensor( patchilizer.bar2patch(next_bar), device=device ).unsqueeze(0) input_patches = torch.cat( [input_patches, predicted_patch.unsqueeze(0)], dim=1 ) else: break tunes += f"{tune}\n\n" print("\n") print("Generation time: {:.2f} seconds".format(time.time() - start_time)) os.makedirs("./tmp", exist_ok=True) timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime()) out_midi = abc_to_midi(tunes, f"./tmp/[{region}]{timestamp}.mid") out_xml = abc_to_musicxml(tunes, f"./tmp/[{region}]{timestamp}.musicxml") out_mxl = musicxml_to_mxl(f"./tmp/[{region}]{timestamp}.musicxml") pdf_file, jpg_file = mxl2jpg(out_mxl) wav_file = midi2wav(out_midi) return tunes, out_midi, pdf_file, out_xml, out_mxl, jpg_file, wav_file def inference(region): if os.path.exists("./tmp"): shutil.rmtree("./tmp") parser = argparse.ArgumentParser() args = get_args(parser) return generate_abc(args, region) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): region_opt = gr.Dropdown( choices=["Mondstadt", "Liyue", "Inazuma", "Sumeru", "Fontaine"], value="Mondstadt", label="Region genre", ) gen_btn = gr.Button("Generate") with gr.Column(): wav_output = gr.Audio(label="Audio", type="filepath") dld_midi = gr.components.File(label="Download MIDI") pdf_score = gr.components.File(label="Download PDF score") dld_xml = gr.components.File(label="Download MusicXML") dld_mxl = gr.components.File(label="Download MXL") abc_output = gr.Textbox(label="abc score", show_copy_button=True) img_score = gr.Image(label="Staff", type="filepath") gen_btn.click( inference, inputs=region_opt, outputs=[ abc_output, dld_midi, pdf_score, dld_xml, dld_mxl, img_score, wav_output, ], ) demo.launch(share=True)