from collections import OrderedDict import khandy import numpy as np def convert_feature_dict_to_array(feature_dict): one_feature = khandy.get_dict_first_item(feature_dict)[1] num_features = sum([len(item) for item in feature_dict.values()]) key_list = [] start_index = 0 feature_array = np.empty((num_features, one_feature.shape[-1]), one_feature.dtype) for key, value in feature_dict.items(): feature_array[start_index: start_index + len(value)]= value key_list += [key] * len(value) start_index += len(value) return key_list, feature_array def convert_feature_array_to_dict(key_list, feature_array): assert len(key_list) == len(feature_array) feature_dict = OrderedDict() for key, feat in zip(key_list, feature_array): feature_dict.setdefault(key, []).append(feat) for label in feature_dict.keys(): feature_dict[label] = np.vstack(feature_dict[label]) return feature_dict def pairwise_distances(x, y, squared=True): """Compute pairwise (squared) Euclidean distances. References: [2016 CVPR] Deep Metric Learning via Lifted Structured Feature Embedding `euclidean_distances` from sklearn """ assert isinstance(x, np.ndarray) and x.ndim == 2 assert isinstance(y, np.ndarray) and y.ndim == 2 assert x.shape[1] == y.shape[1] x_square = np.expand_dims(np.einsum('ij,ij->i', x, x), axis=1) if x is y: y_square = x_square.T else: y_square = np.expand_dims(np.einsum('ij,ij->i', y, y), axis=0) distances = np.dot(x, y.T) # use inplace operation to accelerate distances *= -2 distances += x_square distances += y_square # result maybe less than 0 due to floating point rounding errors. np.maximum(distances, 0, distances) if x is y: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. distances.flat[::distances.shape[0] + 1] = 0.0 if not squared: np.sqrt(distances, distances) return distances