import re import os import time import torch import shutil import argparse import warnings import gradio as gr from transformers import GPT2Config from model import Patchilizer, TunesFormer from convert import abc2xml, xml2, xml2img from utils import ( PATCH_NUM_LAYERS, PATCH_LENGTH, CHAR_NUM_LAYERS, PATCH_SIZE, SHARE_WEIGHTS, WEIGHTS_PATH, TEMP_DIR, TEYVAT, DEVICE, ) def get_args(parser: argparse.ArgumentParser): parser.add_argument( "-num_tunes", type=int, default=1, help="the number of independently computed returned tunes", ) parser.add_argument( "-max_patch", type=int, default=128, help="integer to define the maximum length in tokens of each tune", ) parser.add_argument( "-top_p", type=float, default=0.8, help="float to define the tokens that are within the sample operation of text generation", ) parser.add_argument( "-top_k", type=int, default=8, help="integer to define the tokens that are within the sample operation of text generation", ) parser.add_argument( "-temperature", type=float, default=1.2, help="the temperature of the sampling operation", ) parser.add_argument("-seed", type=int, default=None, help="seed for randomstate") parser.add_argument( "-show_control_code", type=bool, default=False, help="whether to show control code", ) return parser.parse_args() def generate_music(args, region: str): patchilizer = Patchilizer() patch_config = GPT2Config( num_hidden_layers=PATCH_NUM_LAYERS, max_length=PATCH_LENGTH, max_position_embeddings=PATCH_LENGTH, vocab_size=1, ) char_config = GPT2Config( num_hidden_layers=CHAR_NUM_LAYERS, max_length=PATCH_SIZE, max_position_embeddings=PATCH_SIZE, vocab_size=128, ) model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS) checkpoint = torch.load(WEIGHTS_PATH, map_location=torch.device("cpu")) model.load_state_dict(checkpoint["model"]) model = model.to(DEVICE) model.eval() prompt = f"A:{region}\n" tunes = "" num_tunes = args.num_tunes max_patch = args.max_patch top_p = args.top_p top_k = args.top_k temperature = args.temperature seed = args.seed show_control_code = args.show_control_code print(" Hyper parms ".center(60, "#"), "\n") arg_dict: dict = vars(args) for key in arg_dict.keys(): print(f"{key}: {str(arg_dict[key])}") print("\n", " Output tunes ".center(60, "#")) start_time = time.time() for i in range(num_tunes): title_artist = f"T:{region} Fragment\nC:Generated by AI\n" tune = f"X:{str(i + 1)}\n{title_artist + prompt}" lines = re.split(r"(\n)", tune) tune = "" skip = False for line in lines: if show_control_code or line[:2] not in ["S:", "B:", "E:"]: if not skip: print(line, end="") tune += line skip = False else: skip = True input_patches = torch.tensor( [patchilizer.encode(prompt, add_special_patches=True)[:-1]], device=DEVICE ) if tune == "": tokens = None else: prefix = patchilizer.decode(input_patches[0]) remaining_tokens = prompt[len(prefix) :] tokens = torch.tensor( [patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens], device=DEVICE, ) while input_patches.shape[1] < max_patch: predicted_patch, seed = model.generate( input_patches, tokens, top_p=top_p, top_k=top_k, temperature=temperature, seed=seed, ) tokens = None if predicted_patch[0] != patchilizer.eos_token_id: next_bar = patchilizer.decode([predicted_patch]) if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]: print(next_bar, end="") tune += next_bar if next_bar == "": break next_bar = remaining_tokens + next_bar remaining_tokens = "" predicted_patch = torch.tensor( patchilizer.bar2patch(next_bar), device=DEVICE ).unsqueeze(0) input_patches = torch.cat( [input_patches, predicted_patch.unsqueeze(0)], dim=1 ) else: break tunes += f"{tune}\n\n" print("\n") print("Generation time: {:.2f} seconds".format(time.time() - start_time)) timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime()) try: xml = abc2xml(tunes, f"{TEMP_DIR}/[{region}]{timestamp}.musicxml") midi = xml2(xml, "mid") audio = xml2(xml, "wav") pdf, jpg = xml2img(xml) mxl = xml2(xml, "mxl") return tunes, midi, pdf, xml, mxl, jpg, audio except Exception as e: print(f"Invalid abc generated: {e}, retrying...") return generate_music(args, region) def infer(region: str): if os.path.exists(TEMP_DIR): shutil.rmtree(TEMP_DIR) os.makedirs(TEMP_DIR, exist_ok=True) parser = argparse.ArgumentParser() args = get_args(parser) return generate_music(args, TEYVAT[region]) if __name__ == "__main__": warnings.filterwarnings("ignore") with gr.Blocks() as demo: gr.Markdown( """