import re import os import time import torch import shutil import argparse import warnings import gradio as gr from transformers import GPT2Config from model import Patchilizer, TunesFormer from convert import abc2xml, xml2, xml2img from utils import ( PATCH_NUM_LAYERS, PATCH_LENGTH, CHAR_NUM_LAYERS, PATCH_SIZE, SHARE_WEIGHTS, WEIGHTS_PATH, TEMP_DIR, TEYVAT, DEVICE, ) def get_args(parser: argparse.ArgumentParser): parser.add_argument( "-num_tunes", type=int, default=1, help="the number of independently computed returned tunes", ) parser.add_argument( "-max_patch", type=int, default=128, help="integer to define the maximum length in tokens of each tune", ) parser.add_argument( "-top_p", type=float, default=0.8, help="float to define the tokens that are within the sample operation of text generation", ) parser.add_argument( "-top_k", type=int, default=8, help="integer to define the tokens that are within the sample operation of text generation", ) parser.add_argument( "-temperature", type=float, default=1.2, help="the temperature of the sampling operation", ) parser.add_argument("-seed", type=int, default=None, help="seed for randomstate") parser.add_argument( "-show_control_code", type=bool, default=False, help="whether to show control code", ) return parser.parse_args() def generate_music(args, region: str): patchilizer = Patchilizer() patch_config = GPT2Config( num_hidden_layers=PATCH_NUM_LAYERS, max_length=PATCH_LENGTH, max_position_embeddings=PATCH_LENGTH, vocab_size=1, ) char_config = GPT2Config( num_hidden_layers=CHAR_NUM_LAYERS, max_length=PATCH_SIZE, max_position_embeddings=PATCH_SIZE, vocab_size=128, ) model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS) checkpoint = torch.load(WEIGHTS_PATH, map_location=torch.device("cpu")) model.load_state_dict(checkpoint["model"]) model = model.to(DEVICE) model.eval() prompt = f"A:{region}\n" tunes = "" num_tunes = args.num_tunes max_patch = args.max_patch top_p = args.top_p top_k = args.top_k temperature = args.temperature seed = args.seed show_control_code = args.show_control_code print(" Hyper parms ".center(60, "#"), "\n") arg_dict: dict = vars(args) for key in arg_dict.keys(): print(f"{key}: {str(arg_dict[key])}") print("\n", " Output tunes ".center(60, "#")) start_time = time.time() for i in range(num_tunes): title_artist = f"T:{region} Style Fragment\nC:Generated by AI\n" tune = f"X:{str(i + 1)}\n{title_artist + prompt}" lines = re.split(r"(\n)", tune) tune = "" skip = False for line in lines: if show_control_code or line[:2] not in ["S:", "B:", "E:"]: if not skip: print(line, end="") tune += line skip = False else: skip = True input_patches = torch.tensor( [patchilizer.encode(prompt, add_special_patches=True)[:-1]], device=DEVICE ) if tune == "": tokens = None else: prefix = patchilizer.decode(input_patches[0]) remaining_tokens = prompt[len(prefix) :] tokens = torch.tensor( [patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens], device=DEVICE, ) while input_patches.shape[1] < max_patch: predicted_patch, seed = model.generate( input_patches, tokens, top_p=top_p, top_k=top_k, temperature=temperature, seed=seed, ) tokens = None if predicted_patch[0] != patchilizer.eos_token_id: next_bar = patchilizer.decode([predicted_patch]) if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]: print(next_bar, end="") tune += next_bar if next_bar == "": break next_bar = remaining_tokens + next_bar remaining_tokens = "" predicted_patch = torch.tensor( patchilizer.bar2patch(next_bar), device=DEVICE ).unsqueeze(0) input_patches = torch.cat( [input_patches, predicted_patch.unsqueeze(0)], dim=1 ) else: break tunes += f"{tune}\n\n" print("\n") print("Generation time: {:.2f} seconds".format(time.time() - start_time)) timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime()) try: xml = abc2xml(tunes, f"{TEMP_DIR}/[{region}]{timestamp}.musicxml") midi = xml2(xml, "mid") audio = xml2(xml, "wav") pdf, jpg = xml2img(xml) mxl = xml2(xml, "mxl") return tunes, midi, pdf, xml, mxl, jpg, audio except Exception as e: print(f"Invalid abc generated: {e}, retrying...") return generate_music(args, region) def infer(region: str): if os.path.exists(TEMP_DIR): shutil.rmtree(TEMP_DIR) os.makedirs(TEMP_DIR, exist_ok=True) parser = argparse.ArgumentParser() args = get_args(parser) return generate_music(args, TEYVAT[region]) if __name__ == "__main__": warnings.filterwarnings("ignore") with gr.Blocks() as demo: gr.Markdown( """
欢迎使用此创空间, 此创空间基于 Tunesformer 开源项目制作,完全免费。
Welcome to this space based on the Tunesformer open source project, which is totally free!
""" ) with gr.Row(): with gr.Column(): region_opt = gr.Dropdown( choices=list(TEYVAT.keys()), value="蒙德 Mondstadt", label="地区风格 Region", ) gen_btn = gr.Button("生成 Generate") gr.Markdown( """
当前模型还在调试中,计划在原神主线杀青后,所有国家地区角色全部开放后,二创音乐会齐全且样本均衡,届时重新微调模型并添加现实风格筛选辅助游戏各国家输出强化学习,以提升输出区分度与质量。
The current model is still in debugging, the plan is in the Genshin Impact after the main line is killed, all countries and regions after all the characters are open, the second creation of the concert will be complete and the sample is balanced, at that time to re-fine-tune the model and add the reality of the style of screening to assist in the game of each country's output to strengthen the learning in order to enhance the output differentiation and quality. 数据来源 (Data source): MuseScore
Tag 嵌入数据来源 (Tags source): Genshin Impact Wiki | Fandom
模型基础 (Model base): Tunesformer 注:崩铁方面数据工程正在运作中,未来也希望随主线杀青而基线化。
Note: Data engineering on the Star Rail is in operation, and will hopefully be baselined in the future as well with the mainline kill.
""" ) with gr.Column(): wav_output = gr.Audio(label="音频 (Audio)", type="filepath") dld_midi = gr.components.File(label="下载 MIDI (Download MIDI)") pdf_score = gr.components.File(label="下载 PDF 乐谱 (Download PDF)") dld_xml = gr.components.File(label="下载 MusicXML (Download MusicXML)") dld_mxl = gr.components.File(label="下载 MXL (Download MXL)") abc_output = gr.Textbox(label="abc notation", show_copy_button=True) img_score = gr.Image(label="五线谱 (Staff)", type="filepath") gen_btn.click( infer, inputs=region_opt, outputs=[ abc_output, dld_midi, pdf_score, dld_xml, dld_mxl, img_score, wav_output, ], ) demo.launch()