Spaces:
Sleeping
Sleeping
# final one | |
import torch | |
import gradio as gr | |
import os | |
import numpy as np | |
import trimesh | |
import mcubes | |
import imageio | |
from torchvision.utils import save_image | |
from PIL import Image | |
from transformers import AutoModel, AutoConfig | |
from rembg import remove, new_session | |
from functools import partial | |
from kiui.op import recenter | |
import kiui | |
from gradio_litmodel3d import LitModel3D | |
# we load the pre-trained model from HF | |
class LRMGeneratorWrapper: | |
def __init__(self): | |
self.config = AutoConfig.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True) | |
self.model = AutoModel.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True) | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.model.to(self.device) | |
self.model.eval() | |
def forward(self, image, camera): | |
return self.model(image, camera) | |
model_wrapper = LRMGeneratorWrapper() | |
# we preprocess the input image | |
def preprocess_image(image, source_size): | |
session = new_session("isnet-general-use") | |
rembg_remove = partial(remove, session=session) | |
image = np.array(image) | |
image = rembg_remove(image) | |
mask = rembg_remove(image, only_mask=True) | |
image = recenter(image, mask, border_ratio=0.20) | |
image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0 | |
if image.shape[1] == 4: | |
image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...]) | |
image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True) | |
image = torch.clamp(image, 0, 1) | |
return image | |
# Copied from https://github.com/facebookresearch/vfusion3d/blob/main/lrm/cam_utils.py and | |
# https://github.com/facebookresearch/vfusion3d/blob/main/lrm/inferrer.py | |
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor): | |
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1] | |
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1] | |
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1] | |
fx, fy = fx / width, fy / height | |
cx, cy = cx / width, cy / height | |
return fx, fy, cx, cy | |
def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor): | |
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics) | |
return torch.cat([ | |
RT.reshape(-1, 12), | |
fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1), | |
], dim=-1) | |
def _default_intrinsics(): | |
fx = fy = 384 | |
cx = cy = 256 | |
w = h = 512 | |
intrinsics = torch.tensor([ | |
[fx, fy], | |
[cx, cy], | |
[w, h], | |
], dtype=torch.float32) | |
return intrinsics | |
def _default_source_camera(batch_size: int = 1): | |
canonical_camera_extrinsics = torch.tensor([[ | |
[0, 0, 1, 1], | |
[1, 0, 0, 0], | |
[0, 1, 0, 0], | |
]], dtype=torch.float32) | |
canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0) | |
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics) | |
return source_camera.repeat(batch_size, 1) | |
def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None): | |
""" | |
camera_position: (M, 3) | |
look_at: (3) | |
up_world: (3) | |
return: (M, 3, 4) | |
""" | |
# by default, looking at the origin and world up is pos-z | |
if look_at is None: | |
look_at = torch.tensor([0, 0, 0], dtype=torch.float32) | |
if up_world is None: | |
up_world = torch.tensor([0, 0, 1], dtype=torch.float32) | |
look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1) | |
up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1) | |
z_axis = camera_position - look_at | |
z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True) | |
x_axis = torch.cross(up_world, z_axis) | |
x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True) | |
y_axis = torch.cross(z_axis, x_axis) | |
y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True) | |
extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1) | |
return extrinsics | |
def compose_extrinsic_RT(RT: torch.Tensor): | |
""" | |
Compose the standard form extrinsic matrix from RT. | |
Batched I/O. | |
""" | |
return torch.cat([ | |
RT, | |
torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device) | |
], dim=1) | |
def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor): | |
""" | |
RT: (N, 3, 4) | |
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]] | |
""" | |
E = compose_extrinsic_RT(RT) | |
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics) | |
I = torch.stack([ | |
torch.stack([fx, torch.zeros_like(fx), cx], dim=-1), | |
torch.stack([torch.zeros_like(fy), fy, cy], dim=-1), | |
torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1), | |
], dim=1) | |
return torch.cat([ | |
E.reshape(-1, 16), | |
I.reshape(-1, 9), | |
], dim=-1) | |
def _default_render_cameras(batch_size: int = 1): | |
M = 80 | |
radius = 1.5 | |
elevation = 0 | |
camera_positions = [] | |
rand_theta = np.random.uniform(0, np.pi/180) | |
elevation = np.radians(elevation) | |
for i in range(M): | |
theta = 2 * np.pi * i / M + rand_theta | |
x = radius * np.cos(theta) * np.cos(elevation) | |
y = radius * np.sin(theta) * np.cos(elevation) | |
z = radius * np.sin(elevation) | |
camera_positions.append([x, y, z]) | |
camera_positions = torch.tensor(camera_positions, dtype=torch.float32) | |
extrinsics = _center_looking_at_camera_pose(camera_positions) | |
render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1) | |
render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics) | |
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
def generate_mesh(image, source_size=512, render_size=384, mesh_size=384, export_mesh=False, export_video=True, fps=30): | |
image = preprocess_image(image, source_size).to(model_wrapper.device) | |
source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device) | |
with torch.no_grad(): | |
planes = model_wrapper.forward(image, source_camera) | |
if export_mesh: | |
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size) | |
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0) | |
vtx = vtx / (mesh_size - 1) * 2 - 1 | |
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0) | |
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy() | |
vtx_colors = (vtx_colors * 255).astype(np.uint8) | |
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) | |
mesh_path = "awesome_mesh.obj" | |
mesh.export(mesh_path, 'obj') | |
return mesh_path, mesh_path | |
if export_video: | |
render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device) | |
frames = [] | |
chunk_size = 1 | |
for i in range(0, render_cameras.shape[1], chunk_size): | |
frame_chunk = model_wrapper.model.synthesizer( | |
planes, | |
render_cameras[:, i:i + chunk_size], | |
render_size, | |
render_size, | |
0, | |
0 | |
) | |
frames.append(frame_chunk['images_rgb']) | |
frames = torch.cat(frames, dim=1) | |
print(frames.shape) | |
frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8) | |
video_path = "awesome_video.mp4" | |
imageio.mimwrite(video_path, frames, fps=fps) | |
return None, video_path | |
return None, None | |
def step_1_generate_obj(image): | |
mesh_path, _ = generate_mesh(image, export_mesh=True) | |
return mesh_path, mesh_path | |
def step_2_generate_video(image): | |
_, video_path = generate_mesh(image, export_video=True) | |
return video_path | |
def step_3_display_3d_model(mesh_file): | |
return mesh_file | |
# set up the example files from assets folder, we limit to 10 | |
example_folder = "assets" | |
examples = [os.path.join(example_folder, f) for f in os.listdir(example_folder) if f.endswith(('.png', '.jpg', '.jpeg'))][:10] | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
img_input = gr.Image(type="pil", label="Input Image") | |
examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=3) | |
generate_mesh_button = gr.Button("Generate and Download Mesh") | |
generate_video_button = gr.Button("Generate and Download Video") | |
obj_file_output = gr.File(label="Download .obj File") | |
video_file_output = gr.File(label="Download Video") | |
with gr.Column(): | |
model_output = LitModel3D( | |
clear_color=[0.1, 0.1, 0.1, 0], # can adjust background color for better contrast | |
label="3D Model Visualization", | |
scale=1.0, | |
tonemapping="aces", # can use aces tonemapping for more realistic lighting | |
exposure=1.0, # can adjust exposure to control brightness | |
contrast=1.1, # can slightly increase contrast for better depth | |
camera_position=(0, 0, 2), # will set initial camera position to center the model | |
zoom_speed=0.5, # will adjust zoom speed for better control | |
pan_speed=0.5, # will adjust pan speed for better control | |
interactive=True # this allow users to interact with the model | |
) | |
# clear outputs | |
def clear_model_viewer(): | |
"""Reset the Model3D component before loading a new model.""" | |
return gr.update(value=None) | |
def generate_and_visualize(image): | |
mesh_path = step_1_generate_obj(image) | |
return mesh_path, mesh_path | |
# first we clear the existing 3D model | |
img_input.change(clear_model_viewer, inputs=None, outputs=model_output) | |
# then, generate the mesh and video | |
generate_mesh_button.click(step_1_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output]) | |
generate_video_button.click(step_2_generate_video, inputs=img_input, outputs=video_file_output) | |
demo.launch(debug=True) | |