VFusion3D / app.py
JunlinHan's picture
Update app.py
d6f752e verified
raw
history blame
10.5 kB
# final one
import torch
import gradio as gr
import os
import numpy as np
import trimesh
import mcubes
import imageio
from torchvision.utils import save_image
from PIL import Image
from transformers import AutoModel, AutoConfig
from rembg import remove, new_session
from functools import partial
from kiui.op import recenter
import kiui
from gradio_litmodel3d import LitModel3D
# we load the pre-trained model from HF
class LRMGeneratorWrapper:
def __init__(self):
self.config = AutoConfig.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True)
self.model = AutoModel.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model.to(self.device)
self.model.eval()
def forward(self, image, camera):
return self.model(image, camera)
model_wrapper = LRMGeneratorWrapper()
# we preprocess the input image
def preprocess_image(image, source_size):
session = new_session("isnet-general-use")
rembg_remove = partial(remove, session=session)
image = np.array(image)
image = rembg_remove(image)
mask = rembg_remove(image, only_mask=True)
image = recenter(image, mask, border_ratio=0.20)
image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0
if image.shape[1] == 4:
image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True)
image = torch.clamp(image, 0, 1)
return image
# Copied from https://github.com/facebookresearch/vfusion3d/blob/main/lrm/cam_utils.py and
# https://github.com/facebookresearch/vfusion3d/blob/main/lrm/inferrer.py
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
fx, fy = fx / width, fy / height
cx, cy = cx / width, cy / height
return fx, fy, cx, cy
def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
return torch.cat([
RT.reshape(-1, 12),
fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
], dim=-1)
def _default_intrinsics():
fx = fy = 384
cx = cy = 256
w = h = 512
intrinsics = torch.tensor([
[fx, fy],
[cx, cy],
[w, h],
], dtype=torch.float32)
return intrinsics
def _default_source_camera(batch_size: int = 1):
canonical_camera_extrinsics = torch.tensor([[
[0, 0, 1, 1],
[1, 0, 0, 0],
[0, 1, 0, 0],
]], dtype=torch.float32)
canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
return source_camera.repeat(batch_size, 1)
def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None):
"""
camera_position: (M, 3)
look_at: (3)
up_world: (3)
return: (M, 3, 4)
"""
# by default, looking at the origin and world up is pos-z
if look_at is None:
look_at = torch.tensor([0, 0, 0], dtype=torch.float32)
if up_world is None:
up_world = torch.tensor([0, 0, 1], dtype=torch.float32)
look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1)
up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1)
z_axis = camera_position - look_at
z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True)
x_axis = torch.cross(up_world, z_axis)
x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True)
y_axis = torch.cross(z_axis, x_axis)
y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True)
extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1)
return extrinsics
def compose_extrinsic_RT(RT: torch.Tensor):
"""
Compose the standard form extrinsic matrix from RT.
Batched I/O.
"""
return torch.cat([
RT,
torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device)
], dim=1)
def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor):
"""
RT: (N, 3, 4)
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
"""
E = compose_extrinsic_RT(RT)
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
I = torch.stack([
torch.stack([fx, torch.zeros_like(fx), cx], dim=-1),
torch.stack([torch.zeros_like(fy), fy, cy], dim=-1),
torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1),
], dim=1)
return torch.cat([
E.reshape(-1, 16),
I.reshape(-1, 9),
], dim=-1)
def _default_render_cameras(batch_size: int = 1):
M = 80
radius = 1.5
elevation = 0
camera_positions = []
rand_theta = np.random.uniform(0, np.pi/180)
elevation = np.radians(elevation)
for i in range(M):
theta = 2 * np.pi * i / M + rand_theta
x = radius * np.cos(theta) * np.cos(elevation)
y = radius * np.sin(theta) * np.cos(elevation)
z = radius * np.sin(elevation)
camera_positions.append([x, y, z])
camera_positions = torch.tensor(camera_positions, dtype=torch.float32)
extrinsics = _center_looking_at_camera_pose(camera_positions)
render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1)
render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics)
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)
def generate_mesh(image, source_size=512, render_size=384, mesh_size=384, export_mesh=False, export_video=True, fps=30):
image = preprocess_image(image, source_size).to(model_wrapper.device)
source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)
with torch.no_grad():
planes = model_wrapper.forward(image, source_camera)
if export_mesh:
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
vtx = vtx / (mesh_size - 1) * 2 - 1
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0)
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
vtx_colors = (vtx_colors * 255).astype(np.uint8)
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
mesh_path = "awesome_mesh.obj"
mesh.export(mesh_path, 'obj')
return mesh_path, mesh_path
if export_video:
render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device)
frames = []
chunk_size = 1
for i in range(0, render_cameras.shape[1], chunk_size):
frame_chunk = model_wrapper.model.synthesizer(
planes,
render_cameras[:, i:i + chunk_size],
render_size,
render_size,
0,
0
)
frames.append(frame_chunk['images_rgb'])
frames = torch.cat(frames, dim=1)
print(frames.shape)
frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
video_path = "awesome_video.mp4"
imageio.mimwrite(video_path, frames, fps=fps)
return None, video_path
return None, None
def step_1_generate_obj(image):
mesh_path, _ = generate_mesh(image, export_mesh=True)
return mesh_path, mesh_path
def step_2_generate_video(image):
_, video_path = generate_mesh(image, export_video=True)
return video_path
def step_3_display_3d_model(mesh_file):
return mesh_file
# set up the example files from assets folder, we limit to 10
example_folder = "assets"
examples = [os.path.join(example_folder, f) for f in os.listdir(example_folder) if f.endswith(('.png', '.jpg', '.jpeg'))][:10]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
img_input = gr.Image(type="pil", label="Input Image")
examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=3)
generate_mesh_button = gr.Button("Generate and Download Mesh")
generate_video_button = gr.Button("Generate and Download Video")
obj_file_output = gr.File(label="Download .obj File")
video_file_output = gr.File(label="Download Video")
with gr.Column():
model_output = LitModel3D(
clear_color=[0.1, 0.1, 0.1, 0], # can adjust background color for better contrast
label="3D Model Visualization",
scale=1.0,
tonemapping="aces", # can use aces tonemapping for more realistic lighting
exposure=1.0, # can adjust exposure to control brightness
contrast=1.1, # can slightly increase contrast for better depth
camera_position=(0, 0, 2), # will set initial camera position to center the model
zoom_speed=0.5, # will adjust zoom speed for better control
pan_speed=0.5, # will adjust pan speed for better control
interactive=True # this allow users to interact with the model
)
# clear outputs
def clear_model_viewer():
"""Reset the Model3D component before loading a new model."""
return gr.update(value=None)
def generate_and_visualize(image):
mesh_path = step_1_generate_obj(image)
return mesh_path, mesh_path
# first we clear the existing 3D model
img_input.change(clear_model_viewer, inputs=None, outputs=model_output)
# then, generate the mesh and video
generate_mesh_button.click(step_1_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output])
generate_video_button.click(step_2_generate_video, inputs=img_input, outputs=video_file_output)
demo.launch(debug=True)