import gradio as gr from mtcnn import MTCNN import cv2 import numpy as np import time import concurrent.futures # loading haar ff = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') ff_alt = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_alt.xml') ff_alt2 = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_alt2.xml') pf = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_profileface.xml') # loading mtcnn mtcnn = MTCNN() global_start = time.perf_counter() haar_start = 0 mtcnn_start = 0 def get_unique_face_locations(all_face_locations): unique_detected_faces = [] for (x1, y1, w1, h1) in all_face_locations: unique = True for (x2, y2, w2, h2) in unique_detected_faces: if abs(x1 - x2) < 50 and abs(y1 - y2) < 50: unique = False break if unique: unique_detected_faces.append((x1, y1, w1, h1)) return unique_detected_faces def detect_haar(gray): global haar_start haar_start = time.perf_counter() ff_faces = ff.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=10, minSize=(25, 25)) ff_alt2_faces = ff_alt2.detectMultiScale(gray, scaleFactor=1.05, minNeighbors=10, minSize=(20, 20)) pf_faces = pf.detectMultiScale(gray, scaleFactor=1.05, minNeighbors=5, minSize=(20, 20)) return ff_faces, ff_alt2_faces, pf_faces def detect_mtcnn(frame): global mtcnn_start mtcnn_start = time.perf_counter() faces = mtcnn.detect_faces(frame) mt_faces = [face['box'] for face in faces] return mt_faces def detect_faces(image): frame = image gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY) with concurrent.futures.ThreadPoolExecutor() as executor: haar_detections = executor.submit(detect_haar, gray) mtcnn_detections = executor.submit(detect_mtcnn, frame) ff_faces, ff_alt2_faces, pf_faces = haar_detections.result() mt_faces = mtcnn_detections.result() all_faces = [*ff_faces, *ff_alt2_faces, *pf_faces, *mt_faces] unique_detected_faces = get_unique_face_locations(all_faces) for (x, y, w, h) in unique_detected_faces: cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 3) frame = cv2.putText(frame, f"{len(unique_detected_faces)} Faces", (20, 650), cv2.FONT_HERSHEY_SIMPLEX, 1.6, (0, 0, 0), 5) print('\n\n') print(f"Haar Took - {time.perf_counter() - haar_start:.2f}s") print(f"MTCNN Took - {time.perf_counter() - mtcnn_start:.2f}s") print(f"Total Time - {time.perf_counter() - global_start:.2f}s") print('\n\n') return frame # Create a Gradio interface iface = gr.Interface( fn=detect_faces, inputs=gr.components.Image(sources="webcam"), outputs=[gr.components.Image(type="numpy", label="Processed Image")], live=True ) # Launch the application iface.launch()