# impoprt packages import torch import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, pipeline import sentencepiece import gradio as gr # Image captioning model processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") # Translate en to ar model_translater = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-ar") # conditional image captioning (with prefix-) def image_captioning(image_url, prefix="a "): """ Return text (As str) to describe an image """ # Get the image by image_url and convert it to RGB raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') # Process the image inputs = processor(raw_image, prefix, return_tensors="pt") # Generate text to describe the image output = model.generate(**inputs) # Decode the output output = processor.decode(output[0], skip_special_tokens=True, max_length=80) return output def translate_text(text, to="ar"): """ Return translated text """ translated_text = model_translater(str(text)) return translated_text[0]['translation_text'] def image_captioning_ar(image_url, prefix = "a "): if image_url: text = image_captioning(image_url, prefix=prefix) return translate_text(text) return null input_image = gr.inputs.Image(type="pil", label = 'Upload your image') imageCaptioning_interface = gr.Interface( fn = image_captioning_ar, inputs=input_image, outputs=gr.outputs.Textbox(label="Caption"), title = 'Image captioning', ) imageCaptioning_interface.launch()