import torch import ldm_patched.modules.samplers import ldm_patched.modules.model_management from collections import namedtuple from ldm_patched.contrib.external_custom_sampler import SDTurboScheduler from ldm_patched.k_diffusion import sampling as k_diffusion_sampling from ldm_patched.modules.samplers import normal_scheduler, simple_scheduler, ddim_scheduler from ldm_patched.modules.model_base import SDXLRefiner, SDXL from ldm_patched.modules.conds import CONDRegular from ldm_patched.modules.sample import get_additional_models, get_models_from_cond, cleanup_additional_models from ldm_patched.modules.samplers import resolve_areas_and_cond_masks, wrap_model, calculate_start_end_timesteps, \ create_cond_with_same_area_if_none, pre_run_control, apply_empty_x_to_equal_area, encode_model_conds current_refiner = None refiner_switch_step = -1 @torch.no_grad() @torch.inference_mode() def clip_separate_inner(c, p, target_model=None, target_clip=None): if target_model is None or isinstance(target_model, SDXLRefiner): c = c[..., -1280:].clone() elif isinstance(target_model, SDXL): c = c.clone() else: p = None c = c[..., :768].clone() final_layer_norm = target_clip.cond_stage_model.clip_l.transformer.text_model.final_layer_norm final_layer_norm_origin_device = final_layer_norm.weight.device final_layer_norm_origin_dtype = final_layer_norm.weight.dtype c_origin_device = c.device c_origin_dtype = c.dtype final_layer_norm.to(device='cpu', dtype=torch.float32) c = c.to(device='cpu', dtype=torch.float32) c = torch.chunk(c, int(c.size(1)) // 77, 1) c = [final_layer_norm(ci) for ci in c] c = torch.cat(c, dim=1) final_layer_norm.to(device=final_layer_norm_origin_device, dtype=final_layer_norm_origin_dtype) c = c.to(device=c_origin_device, dtype=c_origin_dtype) return c, p @torch.no_grad() @torch.inference_mode() def clip_separate(cond, target_model=None, target_clip=None): results = [] for c, px in cond: p = px.get('pooled_output', None) c, p = clip_separate_inner(c, p, target_model=target_model, target_clip=target_clip) p = {} if p is None else {'pooled_output': p.clone()} results.append([c, p]) return results @torch.no_grad() @torch.inference_mode() def clip_separate_after_preparation(cond, target_model=None, target_clip=None): results = [] for x in cond: p = x.get('pooled_output', None) c = x['model_conds']['c_crossattn'].cond c, p = clip_separate_inner(c, p, target_model=target_model, target_clip=target_clip) result = {'model_conds': {'c_crossattn': CONDRegular(c)}} if p is not None: result['pooled_output'] = p.clone() results.append(result) return results @torch.no_grad() @torch.inference_mode() def sample_hacked(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): global current_refiner positive = positive[:] negative = negative[:] resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device) resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device) model_wrap = wrap_model(model) calculate_start_end_timesteps(model, negative) calculate_start_end_timesteps(model, positive) if latent_image is not None: latent_image = model.process_latent_in(latent_image) if hasattr(model, 'extra_conds'): positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask) negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask) #make sure each cond area has an opposite one with the same area for c in positive: create_cond_with_same_area_if_none(negative, c) for c in negative: create_cond_with_same_area_if_none(positive, c) # pre_run_control(model, negative + positive) pre_run_control(model, positive) # negative is not necessary in Fooocus, 0.5s faster. apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x]) apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x]) extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed} if current_refiner is not None and hasattr(current_refiner.model, 'extra_conds'): positive_refiner = clip_separate_after_preparation(positive, target_model=current_refiner.model) negative_refiner = clip_separate_after_preparation(negative, target_model=current_refiner.model) positive_refiner = encode_model_conds(current_refiner.model.extra_conds, positive_refiner, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask) negative_refiner = encode_model_conds(current_refiner.model.extra_conds, negative_refiner, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask) def refiner_switch(): cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))) extra_args["cond"] = positive_refiner extra_args["uncond"] = negative_refiner # clear ip-adapter for refiner extra_args['model_options'] = {k: {} if k == 'transformer_options' else v for k, v in extra_args['model_options'].items()} models, inference_memory = get_additional_models(positive_refiner, negative_refiner, current_refiner.model_dtype()) ldm_patched.modules.model_management.load_models_gpu( [current_refiner] + models, model.memory_required([noise.shape[0] * 2] + list(noise.shape[1:])) + inference_memory) model_wrap.inner_model = current_refiner.model print('Refiner Swapped') return def callback_wrap(step, x0, x, total_steps): if step == refiner_switch_step and current_refiner is not None: refiner_switch() if callback is not None: # residual_noise_preview = x - x0 # residual_noise_preview /= residual_noise_preview.std() # residual_noise_preview *= x0.std() callback(step, x0, x, total_steps) samples = sampler.sample(model_wrap, sigmas, extra_args, callback_wrap, noise, latent_image, denoise_mask, disable_pbar) return model.process_latent_out(samples.to(torch.float32)) @torch.no_grad() @torch.inference_mode() def calculate_sigmas_scheduler_hacked(model, scheduler_name, steps): if scheduler_name == "karras": sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max)) elif scheduler_name == "exponential": sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max)) elif scheduler_name == "normal": sigmas = normal_scheduler(model, steps) elif scheduler_name == "simple": sigmas = simple_scheduler(model, steps) elif scheduler_name == "ddim_uniform": sigmas = ddim_scheduler(model, steps) elif scheduler_name == "sgm_uniform": sigmas = normal_scheduler(model, steps, sgm=True) elif scheduler_name == "turbo": sigmas = SDTurboScheduler().get_sigmas(namedtuple('Patcher', ['model'])(model=model), steps=steps, denoise=1.0)[0] else: raise TypeError("error invalid scheduler") return sigmas ldm_patched.modules.samplers.calculate_sigmas_scheduler = calculate_sigmas_scheduler_hacked ldm_patched.modules.samplers.sample = sample_hacked