from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration from langchain import HuggingFaceHub, LLMChain, PromptTemplate import gradio as gr import numpy as np import requests import os # Load image captioning model processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def generate_caption_from_image(image_path): # Process the image and generate caption raw_image = Image.open(image_path).convert("RGB") inputs = processor(raw_image, return_tensors="pt") out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) return caption def generate_story_from_caption(caption): # Generate story based on caption llm = HuggingFaceHub(huggingfacehub_api_token=os.getenv('HUGGING_FACE'), repo_id="tiiuae/falcon-7b-instruct", verbose=False, model_kwargs={"temperature": 0.2, "max_new_tokens": 4000}) template = """You are a story teller. You get a scenario as an input text, and generate a short story out of it. Context: {scenario} Story:""" prompt = PromptTemplate(template=template, input_variables=["scenario"]) # Let's create our LLM chain now chain = LLMChain(prompt=prompt, llm=llm) story = chain.run(caption) start_index = story.find("Story:") + len("Story:") # Extract the text after "Story:" story = story[start_index:].strip() return story def text_to_speech(text): headers = {"Authorization": f"Bearer {os.getenv('HUGGING_FACE')}"} payload = {"inputs": text} API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" response = requests.post(API_URL, headers=headers, json=payload) if response.status_code == 200: with open("output.mp3", "wb") as f: f.write(response.content) return "output.mp3" def generate_story_from_image(image_input): input_image = Image.fromarray(image_input) input_image.save("input_image.jpg") image_path = 'input_image.jpg' caption = generate_caption_from_image(image_path) story = generate_story_from_caption(caption) audio = text_to_speech(story) return audio # Define the input and output components inputs = gr.Image(label="Image") outputs = gr.Audio(label="Story Audio") # Create the Gradio interface gr.Interface(fn=generate_story_from_image, inputs=inputs, outputs=outputs, title="Story Teller").launch(debug=True)