_base_ = [ '../_base_/datasets/union14m_train.py', '../_base_/datasets/union14m_benchmark.py', '../_base_/datasets/cute80.py', '../_base_/datasets/iiit5k.py', '../_base_/datasets/svt.py', '../_base_/datasets/svtp.py', '../_base_/datasets/icdar2013.py', '../_base_/datasets/icdar2015.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_adam_base.py', '_base_nrtr_resnet31.py', ] # optimizer settings train_cfg = dict(max_epochs=6) # learning policy param_scheduler = [ dict(type='MultiStepLR', milestones=[3, 4], end=6), ] _base_.pop('model') dictionary = dict( type='Dictionary', dict_file= # noqa '{{ fileDirname }}/../../../dicts/english_digits_symbols_space.txt', with_padding=True, with_unknown=True, same_start_end=True, with_start=True, with_end=True) model = dict( type='NRTR', backbone=dict( type='ResNet31OCR', layers=[1, 2, 5, 3], channels=[32, 64, 128, 256, 512, 512], stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)), last_stage_pool=False), encoder=dict(type='NRTREncoder'), decoder=dict( type='NRTRDecoder', module_loss=dict( type='CEModuleLoss', ignore_first_char=True, flatten=True), postprocessor=dict(type='AttentionPostprocessor'), dictionary=dictionary, max_seq_len=30, ), data_preprocessor=dict( type='TextRecogDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])) # dataset settings train_list = [ _base_.union14m_challenging, _base_.union14m_hard, _base_.union14m_medium, _base_.union14m_normal, _base_.union14m_easy ] val_list = [ _base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test, _base_.svt_textrecog_test, _base_.svtp_textrecog_test, _base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test ] test_list = [ _base_.union14m_benchmark_artistic, _base_.union14m_benchmark_multi_oriented, _base_.union14m_benchmark_contextless, _base_.union14m_benchmark_curve, _base_.union14m_benchmark_incomplete, _base_.union14m_benchmark_incomplete_ori, _base_.union14m_benchmark_multi_words, _base_.union14m_benchmark_salient, _base_.union14m_benchmark_general, ] train_dataset = dict( type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline) test_dataset = dict( type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline) val_dataset = dict( type='ConcatDataset', datasets=val_list, pipeline=_base_.test_pipeline) train_dataloader = dict( batch_size=128, num_workers=24, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=train_dataset) test_dataloader = dict( batch_size=128, num_workers=4, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=test_dataset) val_dataloader = dict( batch_size=128, num_workers=4, persistent_workers=True, pin_memory=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=val_dataset) val_evaluator = dict( dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15']) test_evaluator = dict(dataset_prefixes=[ 'artistic', 'multi-oriented', 'contextless', 'curve', 'incomplete', 'incomplete-ori', 'multi-words', 'salient', 'general' ])