# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp from mmengine.config import Config, DictAction from mmengine.registry import RUNNERS from mmengine.runner import Runner def parse_args(): parser = argparse.ArgumentParser(description='Test (and eval) a model') parser.add_argument('config', help='Test config file path') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--work-dir', help='The directory to save the file containing evaluation metrics') parser.add_argument( '--save-preds', action='store_true', help='Dump predictions to a pickle file for offline evaluation') parser.add_argument( '--show', action='store_true', help='Show prediction results') parser.add_argument( '--show-dir', help='Directory where painted images will be saved. ' 'If specified, it will be automatically saved ' 'to the work_dir/timestamp/show_dir') parser.add_argument( '--wait-time', type=float, default=2, help='The interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='Override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='Job launcher') parser.add_argument( '--tta', action='store_true', help='Test time augmentation') # When using PyTorch version >= 2.0.0, the `torch.distributed.launch` # will pass the `--local-rank` parameter to `tools/test.py` instead # of `--local_rank`. parser.add_argument('--local_rank', '--local-rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def trigger_visualization_hook(cfg, args): default_hooks = cfg.default_hooks if 'visualization' in default_hooks: visualization_hook = default_hooks['visualization'] # Turn on visualization visualization_hook['enable'] = True visualization_hook['draw_gt'] = True visualization_hook['draw_pred'] = True if args.show: visualization_hook['show'] = True visualization_hook['wait_time'] = args.wait_time if args.show_dir: cfg.visualizer['save_dir'] = args.show_dir cfg.visualizer['vis_backends'] = [dict(type='LocalVisBackend')] else: raise RuntimeError( 'VisualizationHook must be included in default_hooks.' 'refer to usage ' '"visualization=dict(type=\'VisualizationHook\')"') return cfg def main(): args = parse_args() # load config cfg = Config.fromfile(args.config) cfg.launcher = args.launcher if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) cfg.load_from = args.checkpoint # TODO: It will be supported after refactoring the visualizer if args.show and args.show_dir: raise NotImplementedError('--show and --show-dir cannot be set ' 'at the same time') if args.show or args.show_dir: cfg = trigger_visualization_hook(cfg, args) if args.tta: cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline cfg.tta_model.module = cfg.model cfg.model = cfg.tta_model # save predictions if args.save_preds: dump_metric = dict( type='DumpResults', out_file_path=osp.join( cfg.work_dir, f'{osp.basename(args.checkpoint)}_predictions.pkl')) if isinstance(cfg.test_evaluator, (list, tuple)): cfg.test_evaluator = list(cfg.test_evaluator) cfg.test_evaluator.append(dump_metric) else: cfg.test_evaluator = [cfg.test_evaluator, dump_metric] # build the runner from config if 'runner_type' not in cfg: # build the default runner runner = Runner.from_cfg(cfg) else: # build customized runner from the registry # if 'runner_type' is set in the cfg runner = RUNNERS.build(cfg) # start testing runner.test() if __name__ == '__main__': main()