# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from mmocr.registry import MODELS class ScaledDotProductAttention(nn.Module): """Scaled Dot-Product Attention Module. This code is adopted from https://github.com/jadore801120/attention-is-all-you-need-pytorch. Args: temperature (float): The scale factor for softmax input. attn_dropout (float): Dropout layer on attn_output_weights. """ def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: attn = attn.masked_fill(mask == 0, float('-inf')) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn class MultiHeadAttention(nn.Module): """Multi-Head Attention module. Args: n_head (int): The number of heads in the multiheadattention models (default=8). d_model (int): The number of expected features in the decoder inputs (default=512). d_k (int): Total number of features in key. d_v (int): Total number of features in value. dropout (float): Dropout layer on attn_output_weights. qkv_bias (bool): Add bias in projection layer. Default: False. """ def __init__(self, n_head=8, d_model=512, d_k=64, d_v=64, dropout=0.1, qkv_bias=False): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.dim_k = n_head * d_k self.dim_v = n_head * d_v self.linear_q = nn.Linear(self.dim_k, self.dim_k, bias=qkv_bias) self.linear_k = nn.Linear(self.dim_k, self.dim_k, bias=qkv_bias) self.linear_v = nn.Linear(self.dim_v, self.dim_v, bias=qkv_bias) self.attention = ScaledDotProductAttention(d_k**0.5, dropout) self.fc = nn.Linear(self.dim_v, d_model, bias=qkv_bias) self.proj_drop = nn.Dropout(dropout) def forward(self, q, k, v, mask=None): batch_size, len_q, _ = q.size() _, len_k, _ = k.size() q = self.linear_q(q).view(batch_size, len_q, self.n_head, self.d_k) k = self.linear_k(k).view(batch_size, len_k, self.n_head, self.d_k) v = self.linear_v(v).view(batch_size, len_k, self.n_head, self.d_v) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: if mask.dim() == 3: mask = mask.unsqueeze(1) elif mask.dim() == 2: mask = mask.unsqueeze(1).unsqueeze(1) attn_out, _ = self.attention(q, k, v, mask=mask) attn_out = attn_out.transpose(1, 2).contiguous().view( batch_size, len_q, self.dim_v) attn_out = self.fc(attn_out) attn_out = self.proj_drop(attn_out) return attn_out class PositionwiseFeedForward(nn.Module): """Two-layer feed-forward module. Args: d_in (int): The dimension of the input for feedforward network model. d_hid (int): The dimension of the feedforward network model. dropout (float): Dropout layer on feedforward output. act_cfg (dict): Activation cfg for feedforward module. """ def __init__(self, d_in, d_hid, dropout=0.1, act_cfg=dict(type='Relu')): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.act = MODELS.build(act_cfg) self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.w_1(x) x = self.act(x) x = self.w_2(x) x = self.dropout(x) return x class PositionalEncoding(nn.Module): """Fixed positional encoding with sine and cosine functions.""" def __init__(self, d_hid=512, n_position=200, dropout=0): super().__init__() self.dropout = nn.Dropout(p=dropout) # Not a parameter # Position table of shape (1, n_position, d_hid) self.register_buffer( 'position_table', self._get_sinusoid_encoding_table(n_position, d_hid)) def _get_sinusoid_encoding_table(self, n_position, d_hid): """Sinusoid position encoding table.""" denominator = torch.Tensor([ 1.0 / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid) ]) denominator = denominator.view(1, -1) pos_tensor = torch.arange(n_position).unsqueeze(-1).float() sinusoid_table = pos_tensor * denominator sinusoid_table[:, 0::2] = torch.sin(sinusoid_table[:, 0::2]) sinusoid_table[:, 1::2] = torch.cos(sinusoid_table[:, 1::2]) return sinusoid_table.unsqueeze(0) def forward(self, x): """ Args: x (Tensor): Tensor of shape (batch_size, pos_len, d_hid, ...) """ self.device = x.device x = x + self.position_table[:, :x.size(1)].clone().detach() return self.dropout(x)