Collections: - Name: CRNN Metadata: Training Data: OCRDataset Training Techniques: - Adadelta Epochs: 5 Batch Size: 64 Training Resources: 1x NVIDIA A100-SXM4-80GB Architecture: - MiniVGG - CRNNDecoder Paper: URL: https://arxiv.org/pdf/1507.05717.pdf Title: 'An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition' README: configs/textrecog/crnn/README.md Models: - Name: crnn_mini-vgg_5e_mj Alias: CRNN In Collection: CRNN Config: configs/textrecog/crnn/crnn_mini-vgg_5e_mj.py Metadata: Training Data: Syn90k Results: - Task: Text Recognition Dataset: IIIT5K Metrics: word_acc: 0.8053 - Task: Text Recognition Dataset: SVT Metrics: word_acc: 0.8053 - Task: Text Recognition Dataset: ICDAR2013 Metrics: word_acc: 0.8739 - Task: Text Recognition Dataset: ICDAR2015 Metrics: word_acc: 0.5556 - Task: Text Recognition Dataset: SVTP Metrics: word_acc: 0.6093 - Task: Text Recognition Dataset: CT80 Metrics: word_acc: 0.5694 Weights: https://download.openmmlab.com/mmocr/textrecog/crnn/crnn_mini-vgg_5e_mj/crnn_mini-vgg_5e_mj_20220826_224120-8afbedbb.pth