_base_ = [ '_base_dbnetpp_resnet50-dcnv2_fpnc.py', '../_base_/pretrain_runtime.py', '../_base_/datasets/synthtext.py', '../_base_/schedules/schedule_sgd_100k.py', ] train_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_bbox=True, with_polygon=True, with_label=True, ), dict(type='FixInvalidPolygon'), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=32.0 / 255, saturation=0.5), dict( type='ImgAugWrapper', args=[['Fliplr', 0.5], dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]]), dict(type='RandomCrop', min_side_ratio=0.1), dict(type='Resize', scale=(640, 640), keep_ratio=True), dict(type='Pad', size=(640, 640)), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ] synthtext_textdet_train = _base_.synthtext_textdet_train synthtext_textdet_train.pipeline = train_pipeline train_dataloader = dict( batch_size=16, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=synthtext_textdet_train) auto_scale_lr = dict(base_batch_size=16)