# Install dependencies import os os.system('python -m mim install mmocr') os.system('pip install gradio_client==0.2.7') os.system('python -m mim install "mmcv==2.0.0rc4"') os.system('python -m mim install mmengine==0.7.1') os.system('python -m mim install "mmdet==3.0.0rc5"') os.system('pip install -v -e .') import cv2 import argparse import gradio as gr import numpy as np # MMOCR from mmocr.apis.inferencers import MMOCRInferencer def arg_parse(): parser = argparse.ArgumentParser(description='MMOCR demo for gradio app') parser.add_argument( '--rec_config', type=str, default='configs/textrecog/maerec/maerec_b_union14m.py', help='The recognition config file.') parser.add_argument( '--rec_weight', type=str, default= 'maerec_b_union14m.pth', help='The recognition weight file.') parser.add_argument( '--det_config', type=str, default= 'configs/textdet/dbnetpp/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015.py', # noqa, help='The detection config file.') parser.add_argument( '--det_weight', type=str, default='dbnetpp.pth', help='The detection weight file.') parser.add_argument( '--device', type=str, default='cpu', help='The device used for inference.') args = parser.parse_args() return args def run_mmocr(img: np.ndarray, use_detector: bool = True): """Run MMOCR and SAM Args: img (np.ndarray): Input image use_detector (bool, optional): Whether to use detector. Defaults to True. """ if use_detector: mode = 'det_rec' else: mode = 'rec' # Build MMOCR mmocr_inferencer.mode = mode result = mmocr_inferencer(img, return_vis=True) visualization = result['visualization'][0] result = result['predictions'][0] if mode == 'det_rec': rec_texts = result['rec_texts'] det_polygons = result['det_polygons'] det_results = [] for rec_text, det_polygon in zip(rec_texts, det_polygons): det_polygon = np.array(det_polygon).astype(np.int32).tolist() det_results.append(f'{rec_text}: {det_polygon}') out_results = '\n'.join(det_results) visualization = cv2.cvtColor( np.array(visualization), cv2.COLOR_RGB2BGR) else: rec_text = result['rec_texts'][0] rec_score = result['rec_scores'][0] out_results = f'pred: {rec_text} \n score: {rec_score:.2f}' visualization = None return visualization, out_results if __name__ == '__main__': args = arg_parse() mmocr_inferencer = MMOCRInferencer( args.det_config, args.det_weight, args.rec_config, args.rec_weight, device=args.device) with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=1): gr.HTML("""

MAERec: A MAE-pretrained Scene Text Recognizer

[Code]

MAERec is a scene text recognition model composed of a ViT backbone and a Transformer decoder in auto-regressive style. It shows an outstanding performance in scene text recognition, especially when pre-trained on the Union14M-U through MAE.

In this demo, we combine MAERec with DBNet++ to build an end-to-end scene text recognition model.

""") gr.Image('github/maerec.png') with gr.Column(scale=1): input_image = gr.Image(label='Input Image') output_image = gr.Image(label='Output Image') use_detector = gr.Checkbox( label= 'Use Scene Text Detector or Not (Disabled for Recognition Only)', default=True) det_results = gr.Textbox(label='Detection Results') mmocr = gr.Button('Run MMOCR') gr.Markdown("## Image Examples") with gr.Row(): gr.Examples( examples=[ 'github/author.jpg','github/gradio1.jpeg','github/add1.jpg','github/add2.jpg','github/add3.jpg', 'github/Art_Curve_178.jpg','github/add4.jpg','github/add5.jpg','github/add6.jpg', 'github/add7.jpg','github/add8.jpg','github/add9.jpg','github/add10.jpg','github/add11.jpg', 'github/add12.jpg', 'github/cute_168.jpg', 'github/hiercurve_2229.jpg', 'github/ic15_52.jpg', 'github/ic15_698.jpg', 'github/Art_Curve_352.jpg' ], inputs=input_image, ) mmocr.click( fn=run_mmocr, inputs=[input_image, use_detector], outputs=[output_image, det_results]) demo.launch(debug=True)