import gradio as gr import numpy as np from joblib import load rf = load("model.pkl") columns = [ "BMI", "Smoking", "AlcoholDrinking", "Stroke", "PhysicalHealth", "MentalHealth", "DiffWalking", "Sex", "AgeEstimate", "Race", "Diabetic", "PhysicalActivity", "GenHealth", "SleepTime", "Asthma", "KidneyDisease", "SkinCancer" ] def predict( BMI, Smoking, AlcoholDrinking, Stroke, PhysicalHealth, MentalHealth, DiffWalking, Sex, AgeEstimate, Race, Diabetic, PhysicalActivity, GenHealth, SleepTime, Asthma, KidneyDisease, SkinCancer ): data = np.array( [ [ BMI, Smoking, AlcoholDrinking, Stroke, PhysicalHealth, MentalHealth, DiffWalking, Sex, AgeEstimate, Race+1, Diabetic, PhysicalActivity, GenHealth+1, SleepTime, Asthma, KidneyDisease, SkinCancer ] ] ) pred = rf.predict(data)[0] return {"HeartDisease": pred} inputs = [ gr.Slider(minimum=0, maximum=150, label="BMI"), gr.Checkbox(label="Smoking"), gr.Checkbox(label="Alcohol Drinking"), gr.Checkbox(label="Stroke"), gr.Number(label="Physical Health"), gr.Number(label="MentalHealth"), gr.Checkbox(label="Diff Walking"), gr.Dropdown(["Female", "Male"], type="index", label="Sex"), gr.Dropdown(['18-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80 or older'], type="index", label="Age Category"), gr.Dropdown(["White", "Black", "Asian", "American Indian/Alaskan Native", "Hispanic", "Other"], type="index", label="Race"), gr.Dropdown(["No", "Yes", "Yes(during pregnancy)", "No, borderline diabetes"], type="index", label="Diebetic"), gr.Checkbox(label="Physical Activity"), gr.Dropdown(["Poor", "Fair", "Good", "Very good", "Excellent"], type="index", label="General Health"), gr.Number(label="Sleep time"), gr.Checkbox(label="Asthma"), gr.Checkbox(label="Kidney Disease"), gr.Checkbox(label="Skin Cancer"), ] output = gr.Label(num_top_classes=1) iface = gr.Interface( fn=predict, inputs=inputs, outputs=output, description="The purpose of this model is to predict whether or not a person has any heart diseases or not.", ) iface.launch()