File size: 3,726 Bytes
35bafe7
 
f5a396a
 
 
ac462f6
717fa5f
2bd2884
717fa5f
 
 
 
 
 
 
 
 
 
 
 
 
2bd2884
6cf25d0
 
 
 
 
 
 
 
 
 
 
 
 
717fa5f
6cf25d0
 
 
 
 
 
 
 
 
717fa5f
6cf25d0
 
 
 
 
717fa5f
6cf25d0
be64c97
35bafe7
 
 
 
717fa5f
35bafe7
 
 
 
 
 
2bd2884
 
 
35bafe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd2884
6cf25d0
 
 
35bafe7
 
6cf25d0
 
 
35bafe7
6cf25d0
 
 
35bafe7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from diffusers import StableDiffusionXLPipeline
import torch
from langchain.chains import LLMChain
from langchain.llms import HuggingFaceHub
from langchain.prompts import PromptTemplate
import streamlit as st
import json

# Load existing ideas from a file
def load_ideas():
    try:
        with open("ideas.json", "r") as file:
            ideas = json.load(file)
    except FileNotFoundError:
        ideas = []
    return ideas

# Save ideas to a file
def save_ideas(ideas):
    with open("ideas.json", "w") as file:
        json.dump(ideas, file)

# Function to generate content
def generate_content(topic):
    hub_llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta")
    prompt = PromptTemplate(
        input_variables=['keyword'],
        template="""
        Write a comprehensive article about {keyword} covering the following aspects:
        Introduction, History and Background, Key Concepts and Terminology, Use Cases and Applications, Benefits and Drawbacks, Future Outlook, Conclusion
        Ensure that the article is well-structured, informative, and at least 1500 words long. Use SEO best practices for content optimization.
        """
    )
    hub_chain = LLMChain(prompt=prompt, llm=hub_llm, verbose=True)
    content = hub_chain.run(topic)

    subheadings = [
        "Introduction",
        "History and Background",
        "Key Concepts and Terminology",
        "Use Cases and Applications",
        "Benefits and Drawbacks",
        "Future Outlook",
        "Conclusion",
    ]

    for subheading in subheadings:
        if (subheading + ":") in content:
            content = content.replace(subheading + ":", "## " + subheading + "\n")
        elif subheading in content:
            content = content.replace(subheading, "## " + subheading + "\n")

    return content

def make_pipe():
  pipe = StableDiffusionXLPipeline.from_pretrained("segmind/SSD-1B", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
  pipe.to("cuda")
  return pipe

# generate image
def generate_image(pipe,topic):
  prompt = f"A banner for a blog about{topic}" # Your prompt here
  neg_prompt = "ugly, blurry, poor quality" # Negative prompt here
  image = pipe(prompt=prompt, negative_prompt=neg_prompt).images[0]
  return image



pipe = make_pipe()
with st.spinner('Please Wait for the models to train...'):
  if pipe:
    # Streamlit app
    st.title("Blog Generator")

    # Input and button
    topic = st.text_input("Enter Title for the blog")
    button_clicked = st.button("Create blog!")
    st.subheader(topic)
    # Load existing ideas
    existing_ideas = load_ideas()
    st.sidebar.header("Previous Ideas:")

    # Display existing ideas in the sidebar
    keys = list(set([key for idea in existing_ideas for key in idea.keys()]))
    if topic in keys:
      index = keys.index(topic)
      selected_idea = st.sidebar.selectbox("Select Idea", keys, key="selectbox", index=index)
      # Display content for the selected idea
      selected_idea_from_list = next((idea for idea in existing_ideas if selected_idea in idea), None)
      st.markdown(selected_idea_from_list[selected_idea])
    else:
      index = 0
  st.success('')


# Handle button click
if button_clicked:
    # Generate content and update existing ideas
    image = generate_image(pipe,topic)
    st.image(image)
    content = generate_content(topic)
    existing_ideas.append({topic: content})
    save_ideas(existing_ideas)
    st.experimental_rerun()
    # Update keys and selected idea in the sidebar
    keys = list(set([key for idea in existing_ideas for key in idea.keys()]))
    selected_idea = st.sidebar.selectbox("Select Idea", keys, key="selectbox", index=keys.index(topic))
    st.markdown(content)