import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) import os os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_LAUNCH_BLOCKING"] = "1" import os.path as osp import time import argparse import shutil import random from pathlib import Path from typing import List import json import cv2 import numpy as np import torch import torch.nn.functional as F from PIL import Image import PIL.Image as PImage from torchvision.transforms.functional import to_tensor from transformers import AutoTokenizer, T5EncoderModel from huggingface_hub import hf_hub_download import gradio as gr import spaces from models.infinity import Infinity from models.basic import * from utils.dynamic_resolution import dynamic_resolution_h_w, h_div_w_templates from gradio_client import Client torch._dynamo.config.cache_size_limit = 64 client = Client("Qwen/Qwen2.5-72B-Instruct") # Define a function to download weights if not present def download_infinity_weights(weights_path): try: model_file = weights_path / 'infinity_2b_reg.pth' if not model_file.exists(): hf_hub_download(repo_id="FoundationVision/Infinity", filename="infinity_2b_reg.pth", local_dir=str(weights_path)) vae_file = weights_path / 'infinity_vae_d32reg.pth' if not vae_file.exists(): hf_hub_download(repo_id="FoundationVision/Infinity", filename="infinity_vae_d32reg.pth", local_dir=str(weights_path)) except Exception as e: print(f"Error downloading weights: {e}") def encode_prompt(text_tokenizer, text_encoder, prompt): print(f'prompt={prompt}') captions = [prompt] tokens = text_tokenizer(text=captions, max_length=512, padding='max_length', truncation=True, return_tensors='pt') # todo: put this into dataset input_ids = tokens.input_ids.cuda(non_blocking=True) if torch.cuda.is_available() else tokens.input_ids mask = tokens.attention_mask.cuda(non_blocking=True) if torch.cuda.is_available() else tokens.attention_mask text_features = text_encoder(input_ids=input_ids, attention_mask=mask)['last_hidden_state'].float() lens: List[int] = mask.sum(dim=-1).tolist() cu_seqlens_k = F.pad(mask.sum(dim=-1).to(dtype=torch.int32).cumsum_(0), (1, 0)) Ltext = max(lens) kv_compact = [] for len_i, feat_i in zip(lens, text_features.unbind(0)): kv_compact.append(feat_i[:len_i]) kv_compact = torch.cat(kv_compact, dim=0) text_cond_tuple = (kv_compact, lens, cu_seqlens_k, Ltext) return text_cond_tuple def save_slim_model(infinity_model_path, save_file=None, device='cpu', key='gpt_fsdp'): print('[Save slim model]') full_ckpt = torch.load(infinity_model_path, map_location=device) infinity_slim = full_ckpt['trainer'][key] # ema_state_dict = cpu_d['trainer'].get('gpt_ema_fsdp', state_dict) if not save_file: save_file = osp.splitext(infinity_model_path)[0] + '-slim.pth' print(f'Save to {save_file}') torch.save(infinity_slim, save_file) print('[Save slim model] done') return save_file def load_tokenizer(t5_path='google/flan-t5-xl'): """ Load and configure the T5 tokenizer and encoder with optimizations. """ try: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') bf16_supported = device.type == 'cuda' and torch.cuda.is_bf16_supported() dtype = torch.bfloat16 if bf16_supported else torch.float32 tokenizer = AutoTokenizer.from_pretrained( t5_path, legacy=True, model_max_length=512, use_fast=True, ) if device.type == 'cuda': torch.cuda.empty_cache() encoder = T5EncoderModel.from_pretrained( t5_path, torch_dtype=dtype, ) encoder.eval().requires_grad_(False).to(device) if device.type == 'cuda' and not bf16_supported: encoder.half() return tokenizer, encoder except Exception as e: print(f"Error loading tokenizer/encoder: {str(e)}") raise RuntimeError("Failed to initialize text models") from e def load_infinity( rope2d_each_sa_layer, rope2d_normalized_by_hw, use_scale_schedule_embedding, pn, use_bit_label, add_lvl_embeding_only_first_block, model_path='', scale_schedule=None, vae=None, device=None, # Make device optional model_kwargs=None, text_channels=2048, apply_spatial_patchify=0, use_flex_attn=False, bf16=True, ): print('[Loading Infinity]') # Set device if not provided if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f'Using device: {device}') # Set autocast dtype based on bf16 and device support if bf16 and device == 'cuda' and torch.cuda.is_bf16_supported(): autocast_dtype = torch.bfloat16 else: autocast_dtype = torch.float32 bf16 = False # Disable bf16 if not supported text_maxlen = 512 torch.cuda.empty_cache() with torch.amp.autocast(device_type=device, dtype=autocast_dtype), torch.no_grad(): infinity_test: Infinity = Infinity( vae_local=vae, text_channels=text_channels, text_maxlen=text_maxlen, shared_aln=True, raw_scale_schedule=scale_schedule, checkpointing='full-block', customized_flash_attn=False, fused_norm=True, pad_to_multiplier=128, use_flex_attn=use_flex_attn, add_lvl_embeding_only_first_block=add_lvl_embeding_only_first_block, use_bit_label=use_bit_label, rope2d_each_sa_layer=rope2d_each_sa_layer, rope2d_normalized_by_hw=rope2d_normalized_by_hw, pn=pn, apply_spatial_patchify=apply_spatial_patchify, inference_mode=True, train_h_div_w_list=[1.0], **model_kwargs, ).to(device) print(f'[you selected Infinity with {model_kwargs=}] model size: {sum(p.numel() for p in infinity_test.parameters())/1e9:.2f}B, bf16={bf16}') if bf16: for block in infinity_test.unregistered_blocks: block.bfloat16() infinity_test.eval() infinity_test.requires_grad_(False) print('[Load Infinity weights]') state_dict = torch.load(model_path, map_location=device) print(infinity_test.load_state_dict(state_dict)) # # Initialize random number generator on the correct device # infinity_test.rng = torch.Generator(device=device) return infinity_test def transform(pil_img: PImage.Image, tgt_h: int, tgt_w: int) -> torch.Tensor: """ Transform a PIL image to a tensor with target dimensions while preserving aspect ratio. Args: pil_img: PIL Image to transform tgt_h: Target height tgt_w: Target width Returns: torch.Tensor: Normalized tensor image in range [-1, 1] """ if not isinstance(pil_img, PImage.Image): raise TypeError("Input must be a PIL Image") if tgt_h <= 0 or tgt_w <= 0: raise ValueError("Target dimensions must be positive") # Calculate resize dimensions preserving aspect ratio width, height = pil_img.size scale = min(tgt_w / width, tgt_h / height) new_width = int(width * scale) new_height = int(height * scale) # Resize using LANCZOS for best quality pil_img = pil_img.resize((new_width, new_height), resample=PImage.LANCZOS) # Create center crop arr = np.array(pil_img, dtype=np.uint8) # Calculate crop coordinates y1 = max(0, (new_height - tgt_h) // 2) x1 = max(0, (new_width - tgt_w) // 2) y2 = y1 + tgt_h x2 = x1 + tgt_w # Crop and convert to tensor arr = arr[y1:y2, x1:x2] # Convert to normalized tensor in one step return torch.from_numpy(arr.transpose(2, 0, 1)).float().div_(127.5).sub_(1) def joint_vi_vae_encode_decode( vae: 'VAEModel', # Type hint would be more specific with actual VAE class image_path: str | Path, scale_schedule: List[tuple], device: torch.device | str, tgt_h: int, tgt_w: int ) -> tuple[np.ndarray, np.ndarray, torch.Tensor]: """ Encode and decode an image using a VAE model with joint visual-infinity processing. Args: vae: The VAE model instance image_path: Path to input image scale_schedule: List of scale tuples for processing device: Target device for computation tgt_h: Target height for the image tgt_w: Target width for the image Returns: tuple containing: - Original image as numpy array (uint8) - Reconstructed image as numpy array (uint8) - Bit indices tensor Raises: FileNotFoundError: If image file doesn't exist RuntimeError: If VAE processing fails """ try: # Validate input path if not Path(image_path).exists(): raise FileNotFoundError(f"Image not found at {image_path}") # Load and preprocess image pil_image = Image.open(image_path).convert('RGB') inp = transform(pil_image, tgt_h, tgt_w) inp = inp.unsqueeze(0).to(device) # Normalize scale schedule scale_schedule = [(s[0], s[1], s[2]) for s in scale_schedule] # Decide whether to use CPU or GPU device = 'cuda' if torch.cuda.is_available() else 'cpu' # Time the encoding/decoding operations with torch.amp.autocast(device, dtype=torch.bfloat16): encode_start = time.perf_counter() h, z, _, all_bit_indices, _, _ = vae.encode( inp, scale_schedule=scale_schedule ) encode_time = time.perf_counter() - encode_start decode_start = time.perf_counter() recons_img = vae.decode(z)[0] decode_time = time.perf_counter() - decode_start # Process reconstruction if recons_img.dim() == 4: recons_img = recons_img.squeeze(1) # Log performance metrics print(f'VAE encode: {encode_time:.2f}s, decode: {decode_time:.2f}s') print(f'Reconstruction shape: {recons_img.shape}, z shape: {z.shape}') # Convert to numpy arrays efficiently recons_img = (recons_img.add(1).div(2) .permute(1, 2, 0) .mul(255) .cpu() .numpy() .astype(np.uint8)) gt_img = (inp[0].add(1).div(2) .permute(1, 2, 0) .mul(255) .cpu() .numpy() .astype(np.uint8)) return gt_img, recons_img, all_bit_indices except Exception as e: print(f"Error in VAE processing: {str(e)}") raise RuntimeError("VAE processing failed") from e def load_visual_tokenizer(args): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # load vae if args.vae_type in [16,18,20,24,32,64]: from models.bsq_vae.vae import vae_model schedule_mode = "dynamic" codebook_dim = args.vae_type codebook_size = 2**codebook_dim if args.apply_spatial_patchify: patch_size = 8 encoder_ch_mult=[1, 2, 4, 4] decoder_ch_mult=[1, 2, 4, 4] else: patch_size = 16 encoder_ch_mult=[1, 2, 4, 4, 4] decoder_ch_mult=[1, 2, 4, 4, 4] vae = vae_model(args.vae_path, schedule_mode, codebook_dim, codebook_size, patch_size=patch_size, encoder_ch_mult=encoder_ch_mult, decoder_ch_mult=decoder_ch_mult, test_mode=True).to(device) else: raise ValueError(f'vae_type={args.vae_type} not supported') return vae def load_transformer(vae, args): device = "cuda" if torch.cuda.is_available() else "cpu" model_path = args.model_path if args.checkpoint_type == 'torch': slim_model_path = model_path print(f'Loading checkpoint from {slim_model_path}') else: raise ValueError(f"Unsupported checkpoint_type: {args.checkpoint_type}") model_configs = { 'infinity_2b': dict(depth=32, embed_dim=2048, num_heads=16, drop_path_rate=0.1, mlp_ratio=4, block_chunks=8), 'infinity_layer12': dict(depth=12, embed_dim=768, num_heads=8, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), 'infinity_layer16': dict(depth=16, embed_dim=1152, num_heads=12, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), 'infinity_layer24': dict(depth=24, embed_dim=1536, num_heads=16, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), 'infinity_layer32': dict(depth=32, embed_dim=2080, num_heads=20, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), 'infinity_layer40': dict(depth=40, embed_dim=2688, num_heads=24, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), 'infinity_layer48': dict(depth=48, embed_dim=3360, num_heads=28, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), } kwargs_model = model_configs.get(args.model_type) if kwargs_model is None: raise ValueError(f"Unsupported model_type: {args.model_type}") infinity = load_infinity( rope2d_each_sa_layer=args.rope2d_each_sa_layer, rope2d_normalized_by_hw=args.rope2d_normalized_by_hw, use_scale_schedule_embedding=args.use_scale_schedule_embedding, pn=args.pn, use_bit_label=args.use_bit_label, add_lvl_embeding_only_first_block=args.add_lvl_embeding_only_first_block, model_path=slim_model_path, scale_schedule=None, vae=vae, device=device, model_kwargs=kwargs_model, text_channels=args.text_channels, apply_spatial_patchify=args.apply_spatial_patchify, use_flex_attn=args.use_flex_attn, bf16=args.bf16, ) return infinity def enhance_prompt(prompt): SYSTEM = """You are part of a team of bots that creates images. You work with an assistant bot that will draw anything you say. When given a user prompt, your role is to transform it into a creative, detailed, and vivid image description that focuses on visual and sensory features. Avoid directly referencing specific real-world people, places, or cultural knowledge unless explicitly requested by the user. ### Guidelines for Generating the Output: 1. **Output Format:** Your response must be in the following dictionary format: ```json { "prompt": "", "cfg": } ``` 2. **Enhancing the "prompt" field:** - Use your creativity to expand short or vague prompts into highly detailed, visually rich descriptions. - Focus on describing visual and sensory elements, such as colors, textures, shapes, lighting, and emotions. - Avoid including known real-world information unless the user explicitly requests it. Instead, describe features that evoke the essence or appearance of the scene or subject. - For particularly long user prompts (over 50 words), output them directly without refinement. - Image descriptions must remain between 8-512 words. Any excess text will be ignored. - If the user's request involves rendering specific text in the image, enclose that text in single quotation marks and prefix it with "the text". 3. **Determining the "cfg" field:** - If the image to be generated is likely to feature a clear face, set `"cfg": 1`. - If the image does not prominently feature a face, set `"cfg": 3`. 4. **Examples of Enhanced Prompts:** - **User prompt:** "a tree" **Enhanced prompt:** "A towering tree with a textured bark of intricate ridges and grooves stands under a pale blue sky. Its sprawling branches create an umbrella of rich, deep green foliage, with a few golden leaves scattered, catching the sunlight like tiny stars." **Cfg:** `3` - **User prompt:** "a person reading" **Enhanced prompt:** "A figure sits on a cozy armchair, illuminated by the soft, warm glow of a nearby lamp. Their posture is relaxed, and their hands gently hold an open book. Shadows dance across their thoughtful expression, while the fabric of their clothing appears textured and soft, with subtle folds." **Cfg:** `1` 5. **Your Output:** Always return a single dictionary containing both `"prompt"` and `"cfg"` fields. Avoid any additional commentary or explanations. Don't write anything except the dictionary in the output. (Don't start with ```) """ result = client.predict( query=prompt, history=[], system=SYSTEM, api_name="/model_chat" ) dict_of_inputs = json.loads(result[1][-1][-1]) print(dict_of_inputs) return gr.update(value=dict_of_inputs["prompt"]), gr.update(value=float(dict_of_inputs['cfg'])) # Set up paths weights_path = Path(__file__).parent / 'weights' weights_path.mkdir(exist_ok=True) download_infinity_weights(weights_path) # Device setup dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32 print(f"Using dtype: {dtype}") # Define args args = argparse.Namespace( pn='1M', model_path=str(weights_path / 'infinity_2b_reg.pth'), cfg_insertion_layer=0, vae_type=32, vae_path=str(weights_path / 'infinity_vae_d32reg.pth'), add_lvl_embeding_only_first_block=1, use_bit_label=1, model_type='infinity_2b', rope2d_each_sa_layer=1, rope2d_normalized_by_hw=2, use_scale_schedule_embedding=0, sampling_per_bits=1, text_channels=2048, apply_spatial_patchify=0, h_div_w_template=1.000, use_flex_attn=0, cache_dir='/dev/shm', checkpoint_type='torch', seed=0, bf16=1 if dtype == torch.bfloat16 else 0, save_file='tmp.jpg', enable_model_cache=False, ) # Load models print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB") text_tokenizer, text_encoder = load_tokenizer(t5_path="google/flan-t5-xl") print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB") vae = load_visual_tokenizer(args) print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB") infinity = load_transformer(vae, args) print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB") # Define the image generation function @spaces.GPU def generate_image(prompt, cfg, tau, h_div_w, seed): args.prompt = prompt args.cfg = cfg args.tau = tau args.h_div_w = h_div_w args.seed = seed # Find the closest h_div_w_template h_div_w_template_ = h_div_w_templates[np.argmin(np.abs(h_div_w_templates - h_div_w))] # Get scale_schedule based on h_div_w_template_ scale_schedule = dynamic_resolution_h_w[h_div_w_template_][args.pn]['scales'] scale_schedule = [(1, h, w) for (_, h, w) in scale_schedule] # Encode the prompt text_cond_tuple = encode_prompt(text_tokenizer, text_encoder, prompt) # Set device if not provided device = 'cuda' if torch.cuda.is_available() else 'cpu' # Set autocast dtype based on bf16 and device support if device == 'cuda' and torch.cuda.is_bf16_supported(): autocast_dtype = torch.bfloat16 else: autocast_dtype = torch.float32 torch.cuda.empty_cache() with torch.amp.autocast(device_type=device, dtype=autocast_dtype), torch.no_grad(): infinity.rng = torch.Generator(device=device) _, _, img_list = infinity.autoregressive_infer_cfg( vae=vae, scale_schedule=scale_schedule, label_B_or_BLT=text_cond_tuple, g_seed=seed, B=1, negative_label_B_or_BLT=None, force_gt_Bhw=None, cfg_sc=3, cfg_list=[cfg] * len(scale_schedule), tau_list=[tau] * len(scale_schedule), top_k=900, top_p=0.97, returns_vemb=1, ratio_Bl1=None, gumbel=0, norm_cfg=False, cfg_exp_k=0.0, cfg_insertion_layer=[args.cfg_insertion_layer], vae_type=args.vae_type, softmax_merge_topk=-1, ret_img=True, trunk_scale=1000, gt_leak=0, gt_ls_Bl=None, inference_mode=True, sampling_per_bits=args.sampling_per_bits, ) infinity.rng = torch.Generator(device="cpu") img = img_list[0] image = img.cpu().numpy() image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = np.uint8(image) return image markdown_description = """### Instructions: 1. Enter a detailed prompt with rich visual features or use the "Enhance Prompt" button to generate a more detailed description. 2. Adjust the "CFG" and "Tau" sliders to control the strength and randomness of the output. 3. Use the "Aspect Ratio" slider to set the aspect ratio of the generated image. 4. Click the "Generate Image" button to create the image based on your prompt. Arxiv Paper: [Infinity: Scaling Bitwise AutoRegressive Modeling for High-Resolution Image Synthesis](https://arxiv.org/abs/2412.04431). """ html_header = """

Infinity Image Generator by FoundationVision

This is not the official implementation from the main developers!

""" with gr.Blocks() as demo: gr.HTML(html_header) gr.Markdown(markdown_description) with gr.Row(): with gr.Column(): # Prompt Settings gr.Markdown("### Prompt Settings") prompt = gr.Textbox(label="Prompt", value="alien spaceship enterprise", placeholder="Enter your prompt here...") enhance_prompt_button = gr.Button("Enhance Prompt", variant="secondary") # Image Settings gr.Markdown("### Image Settings") with gr.Row(): cfg = gr.Slider(label="CFG (Classifier-Free Guidance)", minimum=1, maximum=10, step=0.5, value=3, info="Controls the strength of the prompt.") tau = gr.Slider(label="Tau (Temperature)", minimum=0.1, maximum=1.0, step=0.1, value=0.5, info="Controls the randomness of the output.") with gr.Row(): h_div_w = gr.Slider(label="Aspect Ratio (Height/Width)", minimum=0.5, maximum=2.0, step=0.1, value=1.0, info="Set the aspect ratio of the generated image.") seed = gr.Number(label="Seed", value=random.randint(0, 10000), info="Set a seed for reproducibility.") # Generate Button generate_button = gr.Button("Generate Image", variant="primary") with gr.Column(): # Output Section gr.Markdown("### Generated Image") output_image = gr.Image(label="Generated Image", type="pil") # Error Handling error_message = gr.Textbox(label="Error Message", visible=False) # Link the enhance prompt button to the prompt enhancement function enhance_prompt_button.click( enhance_prompt, inputs=prompt, outputs=[prompt, cfg], ) # Link the generate button to the image generation function generate_button.click( generate_image, inputs=[prompt, cfg, tau, h_div_w, seed], outputs=output_image ) # Launch the Gradio app demo.launch(ssr_mode=False)