import torch
import spaces
import gradio as gr
from pytube import YouTube
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "MohamedRashad/Arabic-Whisper-CodeSwitching-Edition"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000*3
YT_LENGTH_LIMIT_S = 60*60*3 # limit to 3 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16)
pipe = pipeline(
task="automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
device=device,
)
@spaces.GPU(120)
def transcribe(inputs):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe", "language": "arabic"}, return_timestamps=True)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = YouTube(yt_url).video_id
HTML_str = (
f'
'
" "
)
return HTML_str
def download_yt_audio(yt_url, filename):
yt = YouTube(yt_url)
if yt.length > YT_LENGTH_LIMIT_S:
raise gr.Error("YouTube video is too long! Please upload a video that is less than 1 hour long.")
stream = yt.streams.filter(only_audio=True).first()
stream.download(filename=filename)
def seconds_to_timestamp(seconds):
total_seconds = int(seconds)
hours = total_seconds // 3600
minutes = (total_seconds % 3600) // 60
remaining_seconds = seconds % 60
return f"{hours:02d}:{minutes:02d}:{remaining_seconds:06.3f}"
def chunks_to_subtitle(chunks):
subtitle = ""
for chunk in chunks:
start = seconds_to_timestamp(chunk["timestamp"][0])
end = seconds_to_timestamp(chunk["timestamp"][1])
text = chunk["text"]
subtitle += f"{start} --> {end}\n{text}\n\n"
return subtitle
@spaces.GPU(120)
def yt_transcribe(yt_url):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
output = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe", "language": "arabic"}, return_timestamps=True)
subtitle = chunks_to_subtitle(output["chunks"])
return html_embed_str, subtitle
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
],
outputs="text",
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
],
outputs="text",
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe_demo = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
],
outputs=["html", "text"],
title="Whisper Large V3: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe_demo], ["Microphone", "Audio file", "YouTube"])
demo.queue().launch(share=True)