from __future__ import annotations from typing import Optional, Dict, Tuple from PIL import Image import numpy as np import cv2 import os def pil_from_path(path: str) -> Optional[Image.Image]: try: return Image.open(path).convert("RGB") except Exception: return None def first_frame(path: str, max_side: int = 960) -> Tuple[Optional[Image.Image], Dict[str, float]]: info: Dict[str, float] = {} try: cap = cv2.VideoCapture(path) if not cap.isOpened(): return None, {"error": "Cannot open video"} fps = cap.get(cv2.CAP_PROP_FPS) or 0.0 w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH) or 0) h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) or 0) frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0) ok, frame = cap.read() cap.release() if not ok or frame is None: return None, {"error": "Failed to read first frame"} frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) scale = min(1.0, max_side / max(h, w)) if max(h, w) > 0 else 1.0 if scale < 1.0: frame = cv2.resize(frame, (int(w*scale), int(h*scale)), interpolation=cv2.INTER_AREA) dur = (frames / fps) if fps > 0 else 0.0 return Image.fromarray(frame), {"width": w, "height": h, "fps": round(fps,3), "frames": frames, "duration_s": round(dur,2)} except Exception as e: return None, {"error": str(e)} def mask_debug_on_image(img: Image.Image) -> Image.Image: """Classical single-frame mask heuristic for quick sanity checks (no models).""" ar = np.array(img) if ar.ndim == 3 and ar.shape[2] == 3: gray = cv2.cvtColor(ar, cv2.COLOR_RGB2GRAY) else: gray = ar if ar.ndim == 2 else cv2.cvtColor(ar, cv2.COLOR_RGBA2GRAY) edges = cv2.Canny(gray, 80, 160) edges = cv2.dilate(edges, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), 1) border = np.concatenate([gray[0, :], gray[-1, :], gray[:, 0], gray[:, -1]]) bg_median = np.median(border) diff = np.abs(gray.astype(np.float32) - bg_median) thresh = (diff > 28).astype(np.uint8) * 255 mask = cv2.bitwise_or(thresh, edges) k7 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7)) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, k7) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, k7) mask_c = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB) overlay = (0.6 * ar + 0.4 * np.dstack([mask, np.zeros_like(mask), np.zeros_like(mask)])).astype(np.uint8) return Image.fromarray(overlay)