""" Configuration Management Module ============================== Centralized configuration management for BackgroundFX Pro. Handles settings, model paths, quality parameters, and environment variables. Features: - YAML and JSON configuration files - Environment variable integration - Model path management (works with checkpoints/ folder) - Quality thresholds and processing parameters - Development vs Production configurations - Runtime configuration updates Author: BackgroundFX Pro Team License: MIT """ import os import yaml import json from typing import Dict, Any, Optional, Union from pathlib import Path from dataclasses import dataclass, field import logging from copy import deepcopy logger = logging.getLogger(__name__) @dataclass class ModelConfig: """Configuration for AI models""" name: str path: Optional[str] = None device: str = "auto" enabled: bool = True fallback: bool = False parameters: Dict[str, Any] = field(default_factory=dict) @dataclass class QualityConfig: """Quality assessment configuration""" min_detection_confidence: float = 0.5 min_edge_quality: float = 0.3 min_mask_coverage: float = 0.05 max_asymmetry_score: float = 0.8 temporal_consistency_threshold: float = 0.05 matanyone_quality_threshold: float = 0.3 @dataclass class ProcessingConfig: """Processing pipeline configuration""" batch_size: int = 1 max_resolution: tuple = (1920, 1080) temporal_smoothing: bool = True edge_refinement: bool = True fallback_enabled: bool = True cache_enabled: bool = True @dataclass class VideoConfig: """Video processing configuration""" output_format: str = "mp4" output_quality: str = "high" # high, medium, low preserve_audio: bool = True fps_limit: Optional[int] = None codec: str = "h264" class ConfigManager: """Main configuration manager""" def __init__(self, config_dir: str = ".", checkpoints_dir: str = "checkpoints"): self.config_dir = Path(config_dir) self.checkpoints_dir = Path(checkpoints_dir) # Default configurations self.models: Dict[str, ModelConfig] = {} self.quality = QualityConfig() self.processing = ProcessingConfig() self.video = VideoConfig() # Runtime settings self.debug_mode = False self.environment = "development" # Initialize with defaults self._initialize_default_configs() def _initialize_default_configs(self): """Initialize with default model configurations""" # SAM2 Configuration self.models['sam2'] = ModelConfig( name='sam2', path=self._find_model_path('sam2', ['sam2_hiera_large.pt', 'sam2_hiera_base.pt']), device='auto', enabled=True, fallback=False, parameters={ 'model_type': 'vit_l', 'checkpoint': None, # Will be set based on found path 'multimask_output': False, 'use_checkpoint': True } ) # MatAnyone Configuration self.models['matanyone'] = ModelConfig( name='matanyone', path=None, # Uses HF API by default device='auto', enabled=True, fallback=False, parameters={ 'use_hf_api': True, 'hf_model': 'PeiqingYang/MatAnyone', 'api_timeout': 60, 'quality_threshold': 0.3, 'fallback_enabled': True } ) # Traditional CV Fallback self.models['traditional_cv'] = ModelConfig( name='traditional_cv', path=None, device='cpu', enabled=True, fallback=True, parameters={ 'methods': ['canny', 'color_detection', 'texture_analysis'], 'edge_threshold': [50, 150], 'color_ranges': { 'dark_hair': [[0, 0, 0], [180, 255, 80]], 'brown_hair': [[8, 50, 20], [25, 255, 200]] } } ) def _find_model_path(self, model_name: str, possible_files: list) -> Optional[str]: """Find model file in checkpoints directory""" try: # Check in checkpoints directory for filename in possible_files: full_path = self.checkpoints_dir / filename if full_path.exists(): logger.info(f"✅ Found {model_name} at: {full_path}") return str(full_path) # Also check in subdirectories model_subdir = self.checkpoints_dir / model_name / filename if model_subdir.exists(): logger.info(f"✅ Found {model_name} at: {model_subdir}") return str(model_subdir) logger.warning(f"⚠️ {model_name} model not found in {self.checkpoints_dir}") return None except Exception as e: logger.error(f"❌ Error finding {model_name}: {e}") return None def load_from_file(self, config_path: str) -> bool: """Load configuration from YAML or JSON file""" try: config_path = Path(config_path) if not config_path.exists(): logger.warning(f"⚠️ Config file not found: {config_path}") return False # Determine file type and load if config_path.suffix.lower() in ['.yaml', '.yml']: with open(config_path, 'r') as f: config_data = yaml.safe_load(f) elif config_path.suffix.lower() == '.json': with open(config_path, 'r') as f: config_data = json.load(f) else: logger.error(f"❌ Unsupported config format: {config_path.suffix}") return False # Apply configuration self._apply_config_data(config_data) logger.info(f"✅ Configuration loaded from: {config_path}") return True except Exception as e: logger.error(f"❌ Failed to load config from {config_path}: {e}") return False def _apply_config_data(self, config_data: Dict[str, Any]): """Apply configuration data to current settings""" try: # Models configuration if 'models' in config_data: for model_name, model_config in config_data['models'].items(): if model_name in self.models: # Update existing model config for key, value in model_config.items(): if hasattr(self.models[model_name], key): setattr(self.models[model_name], key, value) elif key == 'parameters': self.models[model_name].parameters.update(value) # Quality configuration if 'quality' in config_data: for key, value in config_data['quality'].items(): if hasattr(self.quality, key): setattr(self.quality, key, value) # Processing configuration if 'processing' in config_data: for key, value in config_data['processing'].items(): if hasattr(self.processing, key): setattr(self.processing, key, value) # Video configuration if 'video' in config_data: for key, value in config_data['video'].items(): if hasattr(self.video, key): setattr(self.video, key, value) # Environment settings if 'environment' in config_data: self.environment = config_data['environment'] if 'debug_mode' in config_data: self.debug_mode = config_data['debug_mode'] except Exception as e: logger.error(f"❌ Error applying config data: {e}") raise def load_from_environment(self): """Load configuration from environment variables""" try: # Model paths from environment sam2_path = os.getenv('SAM2_MODEL_PATH') if sam2_path and Path(sam2_path).exists(): self.models['sam2'].path = sam2_path # API tokens hf_token = os.getenv('HUGGINGFACE_TOKEN') if hf_token: self.models['matanyone'].parameters['hf_token'] = hf_token # Device configuration device = os.getenv('TORCH_DEVICE', os.getenv('DEVICE')) if device: for model in self.models.values(): if model.device == 'auto': model.device = device # Processing settings batch_size = os.getenv('BATCH_SIZE') if batch_size: self.processing.batch_size = int(batch_size) # Quality thresholds min_confidence = os.getenv('MIN_DETECTION_CONFIDENCE') if min_confidence: self.quality.min_detection_confidence = float(min_confidence) # Environment mode env_mode = os.getenv('ENVIRONMENT', os.getenv('ENV')) if env_mode: self.environment = env_mode # Debug mode debug = os.getenv('DEBUG', os.getenv('DEBUG_MODE')) if debug: self.debug_mode = debug.lower() in ['true', '1', 'yes'] logger.info("✅ Environment variables loaded") except Exception as e: logger.error(f"❌ Error loading environment variables: {e}") def save_to_file(self, config_path: str, format: str = 'yaml') -> bool: """Save current configuration to file""" try: config_path = Path(config_path) config_path.parent.mkdir(parents=True, exist_ok=True) # Prepare data for saving config_data = self.to_dict() # Save based on format if format.lower() in ['yaml', 'yml']: with open(config_path, 'w') as f: yaml.dump(config_data, f, default_flow_style=False, indent=2) elif format.lower() == 'json': with open(config_path, 'w') as f: json.dump(config_data, f, indent=2) else: logger.error(f"❌ Unsupported save format: {format}") return False logger.info(f"✅ Configuration saved to: {config_path}") return True except Exception as e: logger.error(f"❌ Failed to save config to {config_path}: {e}") return False def to_dict(self) -> Dict[str, Any]: """Convert configuration to dictionary""" return { 'models': { name: { 'name': config.name, 'path': config.path, 'device': config.device, 'enabled': config.enabled, 'fallback': config.fallback, 'parameters': config.parameters } for name, config in self.models.items() }, 'quality': { 'min_detection_confidence': self.quality.min_detection_confidence, 'min_edge_quality': self.quality.min_edge_quality, 'min_mask_coverage': self.quality.min_mask_coverage, 'max_asymmetry_score': self.quality.max_asymmetry_score, 'temporal_consistency_threshold': self.quality.temporal_consistency_threshold, 'matanyone_quality_threshold': self.quality.matanyone_quality_threshold }, 'processing': { 'batch_size': self.processing.batch_size, 'max_resolution': self.processing.max_resolution, 'temporal_smoothing': self.processing.temporal_smoothing, 'edge_refinement': self.processing.edge_refinement, 'fallback_enabled': self.processing.fallback_enabled, 'cache_enabled': self.processing.cache_enabled }, 'video': { 'output_format': self.video.output_format, 'output_quality': self.video.output_quality, 'preserve_audio': self.video.preserve_audio, 'fps_limit': self.video.fps_limit, 'codec': self.video.codec }, 'environment': self.environment, 'debug_mode': self.debug_mode } def get_model_config(self, model_name: str) -> Optional[ModelConfig]: """Get configuration for specific model""" return self.models.get(model_name) def is_model_enabled(self, model_name: str) -> bool: """Check if model is enabled""" model = self.models.get(model_name) return model.enabled if model else False def get_enabled_models(self) -> Dict[str, ModelConfig]: """Get all enabled models""" return {name: config for name, config in self.models.items() if config.enabled} def get_fallback_models(self) -> Dict[str, ModelConfig]: """Get all fallback models""" return {name: config for name, config in self.models.items() if config.enabled and config.fallback} def update_model_path(self, model_name: str, path: str) -> bool: """Update model path""" if model_name in self.models: if Path(path).exists(): self.models[model_name].path = path logger.info(f"✅ Updated {model_name} path: {path}") return True else: logger.error(f"❌ Model path does not exist: {path}") return False else: logger.error(f"❌ Unknown model: {model_name}") return False def validate_configuration(self) -> Dict[str, Any]: """Validate current configuration and return status""" validation_results = { 'valid': True, 'errors': [], 'warnings': [], 'model_status': {} } try: # Validate models for name, config in self.models.items(): model_status = {'enabled': config.enabled, 'path_exists': True, 'issues': []} if config.enabled and config.path: if not Path(config.path).exists(): model_status['path_exists'] = False model_status['issues'].append(f"Model file not found: {config.path}") validation_results['errors'].append(f"{name}: Model file not found") validation_results['valid'] = False validation_results['model_status'][name] = model_status # Validate quality thresholds if not 0 <= self.quality.min_detection_confidence <= 1: validation_results['errors'].append("min_detection_confidence must be between 0 and 1") validation_results['valid'] = False # Validate processing settings if self.processing.batch_size < 1: validation_results['errors'].append("batch_size must be >= 1") validation_results['valid'] = False # Check for enabled models enabled_models = self.get_enabled_models() if not enabled_models: validation_results['warnings'].append("No models are enabled") # Check for fallback models fallback_models = self.get_fallback_models() if not fallback_models: validation_results['warnings'].append("No fallback models configured") logger.info(f"✅ Configuration validation completed: {'Valid' if validation_results['valid'] else 'Invalid'}") except Exception as e: validation_results['valid'] = False validation_results['errors'].append(f"Validation error: {str(e)}") logger.error(f"❌ Configuration validation failed: {e}") return validation_results def create_runtime_config(self) -> Dict[str, Any]: """Create runtime configuration for processing pipeline""" return { 'models': self.get_enabled_models(), 'quality_thresholds': { 'min_confidence': self.quality.min_detection_confidence, 'min_edge_quality': self.quality.min_edge_quality, 'temporal_threshold': self.quality.temporal_consistency_threshold, 'matanyone_threshold': self.quality.matanyone_quality_threshold }, 'processing_options': { 'batch_size': self.processing.batch_size, 'temporal_smoothing': self.processing.temporal_smoothing, 'edge_refinement': self.processing.edge_refinement, 'fallback_enabled': self.processing.fallback_enabled, 'cache_enabled': self.processing.cache_enabled }, 'video_settings': { 'format': self.video.output_format, 'quality': self.video.output_quality, 'preserve_audio': self.video.preserve_audio, 'codec': self.video.codec }, 'debug_mode': self.debug_mode } # Global configuration manager _config_manager: Optional[ConfigManager] = None def get_config(config_dir: str = ".", checkpoints_dir: str = "checkpoints") -> ConfigManager: """Get global configuration manager""" global _config_manager if _config_manager is None: _config_manager = ConfigManager(config_dir, checkpoints_dir) # Try to load from default locations _config_manager.load_from_environment() # Try to load from config files config_files = ['config.yaml', 'config.yml', 'config.json'] for config_file in config_files: if Path(config_file).exists(): _config_manager.load_from_file(config_file) break return _config_manager def load_config(config_path: str) -> ConfigManager: """Load configuration from specific file""" config = get_config() config.load_from_file(config_path) return config def get_model_config(model_name: str) -> Optional[ModelConfig]: """Get model configuration""" return get_config().get_model_config(model_name) def is_model_enabled(model_name: str) -> bool: """Check if model is enabled""" return get_config().is_model_enabled(model_name) def get_quality_thresholds() -> QualityConfig: """Get quality configuration""" return get_config().quality def get_processing_config() -> ProcessingConfig: """Get processing configuration""" return get_config().processing