MogensR's picture
Create tests/test_models.py
724ecba
raw
history blame
12.9 kB
"""
Tests for model management functionality.
"""
import pytest
import tempfile
from pathlib import Path
from unittest.mock import Mock, patch, MagicMock
import json
from models import (
ModelRegistry,
ModelInfo,
ModelStatus,
ModelTask,
ModelFramework,
ModelDownloader,
ModelLoader,
ModelOptimizer
)
class TestModelRegistry:
"""Test model registry functionality."""
@pytest.fixture
def registry(self):
"""Create a test registry."""
temp_dir = tempfile.mkdtemp()
return ModelRegistry(models_dir=Path(temp_dir))
def test_registry_initialization(self, registry):
"""Test registry initialization."""
assert registry is not None
assert len(registry.models) > 0 # Should have default models
assert registry.models_dir.exists()
def test_register_model(self, registry):
"""Test registering a new model."""
model = ModelInfo(
model_id="test-model",
name="Test Model",
version="1.0",
task=ModelTask.SEGMENTATION,
framework=ModelFramework.PYTORCH,
url="http://example.com/model.pth",
filename="test.pth",
file_size=1000000
)
success = registry.register_model(model)
assert success == True
assert "test-model" in registry.models
def test_get_model(self, registry):
"""Test getting a model by ID."""
model = registry.get_model("rmbg-1.4")
assert model is not None
assert model.model_id == "rmbg-1.4"
assert model.task == ModelTask.SEGMENTATION
def test_list_models_by_task(self, registry):
"""Test listing models by task."""
segmentation_models = registry.list_models(task=ModelTask.SEGMENTATION)
assert len(segmentation_models) > 0
assert all(m.task == ModelTask.SEGMENTATION for m in segmentation_models)
def test_list_models_by_framework(self, registry):
"""Test listing models by framework."""
pytorch_models = registry.list_models(framework=ModelFramework.PYTORCH)
onnx_models = registry.list_models(framework=ModelFramework.ONNX)
assert all(m.framework == ModelFramework.PYTORCH for m in pytorch_models)
assert all(m.framework == ModelFramework.ONNX for m in onnx_models)
def test_get_best_model(self, registry):
"""Test getting best model for a task."""
# Best for accuracy
best_accuracy = registry.get_best_model(
ModelTask.SEGMENTATION,
prefer_speed=False
)
assert best_accuracy is not None
# Best for speed
best_speed = registry.get_best_model(
ModelTask.SEGMENTATION,
prefer_speed=True
)
assert best_speed is not None
def test_update_model_usage(self, registry):
"""Test updating model usage statistics."""
model_id = "rmbg-1.4"
initial_count = registry.models[model_id].use_count
registry.update_model_usage(model_id)
assert registry.models[model_id].use_count == initial_count + 1
assert registry.models[model_id].last_used is not None
def test_get_total_size(self, registry):
"""Test calculating total model size."""
total_size = registry.get_total_size()
assert total_size > 0
# Size of available models should be 0 initially
available_size = registry.get_total_size(status=ModelStatus.AVAILABLE)
assert available_size == 0
def test_export_registry(self, registry, temp_dir):
"""Test exporting registry to file."""
export_path = temp_dir / "registry_export.json"
registry.export_registry(export_path)
assert export_path.exists()
with open(export_path) as f:
data = json.load(f)
assert "models" in data
assert len(data["models"]) > 0
class TestModelDownloader:
"""Test model downloading functionality."""
@pytest.fixture
def downloader(self, mock_registry):
"""Create a test downloader."""
return ModelDownloader(mock_registry)
@patch('requests.get')
def test_download_model(self, mock_get, downloader):
"""Test downloading a model."""
# Mock HTTP response
mock_response = MagicMock()
mock_response.headers = {'content-length': '1000000'}
mock_response.iter_content = MagicMock(
return_value=[b'data' * 1000]
)
mock_response.raise_for_status = MagicMock()
mock_get.return_value = mock_response
# Test download
success = downloader.download_model("test-model", force=True)
assert mock_get.called
# Note: Full download test would require more mocking
def test_download_progress_tracking(self, downloader):
"""Test download progress tracking."""
progress_values = []
def progress_callback(progress):
progress_values.append(progress.progress)
# Start a download (will fail but we can test progress initialization)
with patch.object(downloader, '_download_model_task', return_value=True):
downloader.download_model(
"test-model",
progress_callback=progress_callback
)
assert "test-model" in downloader.downloads
def test_cancel_download(self, downloader):
"""Test cancelling a download."""
# Start a mock download
downloader.downloads["test-model"] = Mock()
downloader._stop_events["test-model"] = Mock()
success = downloader.cancel_download("test-model")
assert success == True
assert downloader._stop_events["test-model"].set.called
def test_download_with_resume(self, downloader, temp_dir):
"""Test download with resume support."""
# Create a partial file
partial_file = temp_dir / "test.pth.part"
partial_file.write_bytes(b"partial_data")
# Mock download would check for partial file
assert partial_file.exists()
assert partial_file.stat().st_size > 0
class TestModelLoader:
"""Test model loading functionality."""
@pytest.fixture
def loader(self, mock_registry):
"""Create a test loader."""
return ModelLoader(mock_registry, device='cpu')
def test_loader_initialization(self, loader):
"""Test loader initialization."""
assert loader is not None
assert loader.device == 'cpu'
assert loader.max_memory_bytes > 0
@patch('torch.load')
def test_load_pytorch_model(self, mock_torch_load, loader):
"""Test loading a PyTorch model."""
mock_model = MagicMock()
mock_torch_load.return_value = mock_model
# Mock model info
model_info = ModelInfo(
model_id="test-pytorch",
name="Test PyTorch Model",
version="1.0",
task=ModelTask.SEGMENTATION,
framework=ModelFramework.PYTORCH,
url="",
filename="model.pth",
local_path="/tmp/model.pth",
status=ModelStatus.AVAILABLE
)
loader.registry.get_model = Mock(return_value=model_info)
with patch.object(Path, 'exists', return_value=True):
loaded = loader.load_model("test-pytorch")
# Note: Full test would require more setup
assert mock_torch_load.called
def test_memory_management(self, loader):
"""Test memory management during model loading."""
# Add mock models to loaded cache
for i in range(5):
loader.loaded_models[f"model_{i}"] = Mock(
memory_usage=100 * 1024 * 1024 # 100MB each
)
loader.current_memory_usage = 500 * 1024 * 1024 # 500MB
# Free memory
loader._free_memory(200 * 1024 * 1024) # Need 200MB
# Should have freed at least 2 models
assert len(loader.loaded_models) < 5
def test_unload_model(self, loader):
"""Test unloading a model."""
# Add a mock model
loader.loaded_models["test"] = Mock(
model=Mock(),
memory_usage=100 * 1024 * 1024
)
loader.current_memory_usage = 100 * 1024 * 1024
success = loader.unload_model("test")
assert success == True
assert "test" not in loader.loaded_models
assert loader.current_memory_usage == 0
def test_get_memory_usage(self, loader):
"""Test getting memory usage statistics."""
# Add mock models
loader.loaded_models["model1"] = Mock(memory_usage=100 * 1024 * 1024)
loader.loaded_models["model2"] = Mock(memory_usage=200 * 1024 * 1024)
loader.current_memory_usage = 300 * 1024 * 1024
usage = loader.get_memory_usage()
assert usage["current_usage_mb"] == 300
assert usage["loaded_models"] == 2
assert "model1" in usage["models"]
assert "model2" in usage["models"]
class TestModelOptimizer:
"""Test model optimization functionality."""
@pytest.fixture
def optimizer(self, mock_registry):
"""Create a test optimizer."""
loader = ModelLoader(mock_registry, device='cpu')
return ModelOptimizer(loader)
@patch('torch.quantization.quantize_dynamic')
def test_quantize_pytorch_model(self, mock_quantize, optimizer):
"""Test PyTorch model quantization."""
# Create mock model
mock_model = MagicMock()
mock_quantize.return_value = mock_model
loaded = Mock(
model_id="test",
model=mock_model,
framework=ModelFramework.PYTORCH,
metadata={'input_size': (1, 3, 512, 512)}
)
with patch.object(optimizer, '_get_model_size', return_value=1000000):
with patch.object(optimizer, '_benchmark_model', return_value=0.1):
result = optimizer._quantize_pytorch(
loaded,
Path("/tmp"),
"dynamic"
)
assert mock_quantize.called
# Note: Full test would require more setup
def test_optimization_result(self, optimizer):
"""Test optimization result structure."""
from models.optimizer import OptimizationResult
result = OptimizationResult(
original_size_mb=100,
optimized_size_mb=25,
compression_ratio=4.0,
original_speed_ms=100,
optimized_speed_ms=50,
speedup=2.0,
accuracy_loss=0.01,
optimization_time=10.0,
output_path="/tmp/optimized.pth"
)
assert result.compression_ratio == 4.0
assert result.speedup == 2.0
assert result.accuracy_loss == 0.01
class TestModelIntegration:
"""Integration tests for model management."""
@pytest.mark.integration
@pytest.mark.slow
def test_model_registry_persistence(self, temp_dir):
"""Test registry persistence across instances."""
# Create registry and add model
registry1 = ModelRegistry(models_dir=temp_dir)
test_model = ModelInfo(
model_id="persistence-test",
name="Persistence Test",
version="1.0",
task=ModelTask.SEGMENTATION,
framework=ModelFramework.PYTORCH,
url="http://example.com/model.pth",
filename="persist.pth"
)
registry1.register_model(test_model)
# Create new registry instance
registry2 = ModelRegistry(models_dir=temp_dir)
# Check if model persisted
loaded_model = registry2.get_model("persistence-test")
assert loaded_model is not None
assert loaded_model.name == "Persistence Test"
@pytest.mark.integration
def test_model_manager_workflow(self):
"""Test complete model manager workflow."""
from models import create_model_manager
manager = create_model_manager()
# Test model discovery
stats = manager.get_stats()
assert "registry" in stats
assert stats["registry"]["total_models"] > 0
# Test benchmark (without actual model loading)
with patch.object(manager.loader, 'load_model', return_value=Mock()):
benchmarks = manager.benchmark()
# Would return empty without real models
assert isinstance(benchmarks, dict)