File size: 21,267 Bytes
90fbb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b25c6
 
 
90fbb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
"""
Visual effects and enhancements for BackgroundFX Pro.
Implements professional-grade effects for background replacement.
"""

import cv2
import numpy as np
import torch
import torch.nn.functional as F
from typing import Dict, List, Optional, Tuple, Union
from dataclasses import dataclass
from enum import Enum
import logging
from scipy.ndimage import gaussian_filter, map_coordinates

from utils.logger import setup_logger
from utils.device import DeviceManager
from core.quality import QualityAnalyzer

logger = setup_logger(__name__)


class EffectType(Enum):
    """Available effect types."""
    BLUR = "blur"
    BOKEH = "bokeh"
    COLOR_SHIFT = "color_shift"
    LIGHT_WRAP = "light_wrap"
    SHADOW = "shadow"
    REFLECTION = "reflection"
    GLOW = "glow"
    CHROMATIC_ABERRATION = "chromatic_aberration"
    VIGNETTE = "vignette"
    FILM_GRAIN = "film_grain"
    MOTION_BLUR = "motion_blur"
    DEPTH_OF_FIELD = "depth_of_field"


@dataclass
class EffectConfig:
    """Configuration for visual effects."""
    blur_strength: float = 15.0
    bokeh_size: int = 21
    bokeh_brightness: float = 1.5
    light_wrap_intensity: float = 0.3
    light_wrap_width: int = 10
    shadow_opacity: float = 0.5
    shadow_blur: float = 10.0
    shadow_offset: Tuple[int, int] = (5, 5)
    glow_intensity: float = 0.5
    glow_radius: int = 20
    chromatic_shift: float = 2.0
    vignette_strength: float = 0.3
    grain_intensity: float = 0.1
    motion_blur_angle: float = 0.0
    motion_blur_size: int = 15


class BackgroundEffects:
    """Apply effects to background images."""
    
    def __init__(self, config: Optional[EffectConfig] = None):
        self.config = config or EffectConfig()
        self.device_manager = DeviceManager()
        
    def apply_blur(self, image: np.ndarray, 
                  strength: Optional[float] = None,
                  mask: Optional[np.ndarray] = None) -> np.ndarray:
        """
        Apply Gaussian blur to image.
        
        Args:
            image: Input image
            strength: Blur strength
            mask: Optional mask for selective blur
            
        Returns:
            Blurred image
        """
        strength = strength or self.config.blur_strength
        
        if strength <= 0:
            return image
        
        # Calculate kernel size (must be odd)
        kernel_size = int(strength * 2) + 1
        
        # Apply blur
        blurred = cv2.GaussianBlur(image, (kernel_size, kernel_size), strength)
        
        # Apply mask if provided
        if mask is not None:
            mask_3ch = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
            if mask_3ch.max() > 1:
                mask_3ch = mask_3ch / 255.0
            
            blurred = image * (1 - mask_3ch) + blurred * mask_3ch
            blurred = blurred.astype(np.uint8)
        
        return blurred
    
    def apply_bokeh(self, image: np.ndarray,
                   depth_map: Optional[np.ndarray] = None) -> np.ndarray:
        """
        Apply bokeh effect to simulate depth of field.
        
        Args:
            image: Input image
            depth_map: Optional depth map for varying blur
            
        Returns:
            Image with bokeh effect
        """
        h, w = image.shape[:2]
        
        # Create depth map if not provided
        if depth_map is None:
            # Simple radial depth map
            center_x, center_y = w // 2, h // 2
            Y, X = np.ogrid[:h, :w]
            dist = np.sqrt((X - center_x)**2 + (Y - center_y)**2)
            depth_map = dist / dist.max()
        
        # Normalize depth map
        if depth_map.max() > 1:
            depth_map = depth_map / 255.0
        
        # Create bokeh kernel
        kernel_size = self.config.bokeh_size
        kernel = self._create_bokeh_kernel(kernel_size)
        
        # Apply varying blur based on depth
        result = np.zeros_like(image, dtype=np.float32)
        
        # Create multiple blur levels
        blur_levels = 5
        for i in range(blur_levels):
            blur_strength = (i + 1) * (kernel_size // blur_levels)
            
            if blur_strength > 0:
                blurred = cv2.filter2D(image, -1, kernel[:blur_strength, :blur_strength])
            else:
                blurred = image
            
            # Create mask for this depth level
            depth_min = i / blur_levels
            depth_max = (i + 1) / blur_levels
            mask = ((depth_map >= depth_min) & (depth_map < depth_max)).astype(np.float32)
            
            # Expand mask to 3 channels
            mask_3ch = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
            
            # Accumulate result
            result += blurred * mask_3ch
        
        # Add bokeh highlights
        result = self._add_bokeh_highlights(result, depth_map)
        
        return np.clip(result, 0, 255).astype(np.uint8)
    
    def _create_bokeh_kernel(self, size: int) -> np.ndarray:
        """Create hexagonal bokeh kernel."""
        kernel = np.zeros((size, size), dtype=np.float32)
        center = size // 2
        radius = center - 1
        
        # Create hexagonal shape
        for i in range(size):
            for j in range(size):
                x, y = i - center, j - center
                # Hexagon equation
                if abs(x) <= radius and abs(y) <= radius * np.sqrt(3) / 2:
                    if abs(y) <= (radius * np.sqrt(3) / 2 - abs(x) * np.sqrt(3) / 2):
                        kernel[i, j] = 1.0
        
        # Normalize
        kernel /= kernel.sum()
        
        return kernel
    
    def _add_bokeh_highlights(self, image: np.ndarray,
                             depth_map: np.ndarray) -> np.ndarray:
        """Add bright bokeh spots to out-of-focus areas."""
        # Extract bright spots
        gray = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_BGR2GRAY)
        _, bright_mask = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
        
        # Dilate bright spots in blurred areas
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
        bright_mask = cv2.dilate(bright_mask, kernel, iterations=2)
        
        # Apply only to out-of-focus areas
        bright_mask = (bright_mask * depth_map).astype(np.uint8)
        
        # Create glow effect
        glow = cv2.GaussianBlur(bright_mask, (21, 21), 10)
        glow = cv2.cvtColor(glow, cv2.COLOR_GRAY2BGR) / 255.0
        
        # Add glow to image
        result = image + glow * self.config.bokeh_brightness * 50
        
        return result
    
    def apply_light_wrap(self, foreground: np.ndarray,
                        background: np.ndarray,
                        mask: np.ndarray) -> np.ndarray:
        """
        Apply light wrap effect for better compositing.
        
        Args:
            foreground: Foreground image
            background: Background image
            mask: Foreground mask
            
        Returns:
            Foreground with light wrap
        """
        # Ensure mask is single channel
        if len(mask.shape) == 3:
            mask = mask[:, :, 0]
        
        # Normalize mask
        if mask.max() > 1:
            mask = mask / 255.0
        
        # Create edge mask
        kernel = np.ones((self.config.light_wrap_width, self.config.light_wrap_width), np.uint8)
        dilated_mask = cv2.dilate(mask, kernel, iterations=1)
        edge_mask = dilated_mask - mask
        
        # Blur the background
        blurred_bg = cv2.GaussianBlur(background, (21, 21), 10)
        
        # Extract light from background
        bg_light = blurred_bg * edge_mask[:, :, np.newaxis]
        
        # Add light wrap to foreground edges
        mask_3ch = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
        wrapped = foreground + bg_light * self.config.light_wrap_intensity
        
        return np.clip(wrapped, 0, 255).astype(np.uint8)
    
    def add_shadow(self, image: np.ndarray,
                  mask: np.ndarray,
                  ground_plane: Optional[float] = None) -> np.ndarray:
        """
        Add realistic shadow to composited image.
        
        Args:
            image: Background image
            mask: Object mask
            ground_plane: Y-coordinate of ground plane
            
        Returns:
            Image with shadow
        """
        h, w = image.shape[:2]
        
        if ground_plane is None:
            ground_plane = h * 0.9  # Default near bottom
        
        # Create shadow mask
        shadow_mask = mask.copy()
        if len(shadow_mask.shape) == 3:
            shadow_mask = shadow_mask[:, :, 0]
        
        # Transform shadow (simple perspective)
        offset_x, offset_y = self.config.shadow_offset
        
        # Create transformation matrix
        src_points = np.float32([[0, 0], [w, 0], [0, h], [w, h]])
        dst_points = np.float32([
            [offset_x, offset_y],
            [w + offset_x, offset_y],
            [-offset_x * 2, h],
            [w + offset_x * 2, h]
        ])
        
        matrix = cv2.getPerspectiveTransform(src_points, dst_points)
        shadow_mask = cv2.warpPerspective(shadow_mask, matrix, (w, h))
        
        # Blur shadow
        blur_size = int(self.config.shadow_blur) * 2 + 1
        shadow_mask = cv2.GaussianBlur(shadow_mask, (blur_size, blur_size), 
                                      self.config.shadow_blur)
        
        # Clip shadow to ground plane
        shadow_mask[:int(ground_plane), :] = 0
        
        # Normalize and apply opacity
        if shadow_mask.max() > 0:
            shadow_mask = shadow_mask / shadow_mask.max()
        shadow_mask *= self.config.shadow_opacity
        
        # Darken image where shadow falls
        shadow_color = np.array([0, 0, 0], dtype=np.float32)
        shadow_mask_3ch = np.repeat(shadow_mask[:, :, np.newaxis], 3, axis=2)
        
        result = image * (1 - shadow_mask_3ch) + shadow_color * shadow_mask_3ch
        
        return np.clip(result, 0, 255).astype(np.uint8)
    
    def add_reflection(self, image: np.ndarray,
                      mask: np.ndarray,
                      reflection_strength: float = 0.3) -> np.ndarray:
        """
        Add reflection effect for glossy surfaces.
        
        Args:
            image: Input image
            mask: Object mask
            reflection_strength: Reflection opacity
            
        Returns:
            Image with reflection
        """
        h, w = image.shape[:2]
        
        # Extract object using mask
        if len(mask.shape) == 2:
            mask_3ch = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
        else:
            mask_3ch = mask
        
        if mask_3ch.max() > 1:
            mask_3ch = mask_3ch / 255.0
        
        object_only = image * mask_3ch
        
        # Flip vertically for reflection
        reflection = cv2.flip(object_only, 0)
        
        # Create gradient for fade-out
        gradient = np.linspace(reflection_strength, 0, h)
        gradient = np.repeat(gradient[:, np.newaxis], w, axis=1)
        gradient = np.repeat(gradient[:, :, np.newaxis], 3, axis=2)
        
        # Apply gradient to reflection
        reflection = reflection * gradient
        
        # Add slight blur for realism
        reflection = cv2.GaussianBlur(reflection, (5, 5), 2)
        
        # Composite reflection below object
        result = image.copy()
        result = result + reflection
        
        return np.clip(result, 0, 255).astype(np.uint8)
    
    def add_glow(self, image: np.ndarray,
                mask: Optional[np.ndarray] = None,
                color: Optional[Tuple[int, int, int]] = None) -> np.ndarray:
        """
        Add glow effect to image or masked region.
        
        Args:
            image: Input image
            mask: Optional mask for selective glow
            color: Glow color (BGR)
            
        Returns:
            Image with glow effect
        """
        if color is None:
            color = (255, 255, 255)  # White glow
        
        # Create glow source
        if mask is not None:
            if len(mask.shape) == 2:
                glow_source = np.zeros_like(image)
                for i in range(3):
                    glow_source[:, :, i] = mask * (color[i] / 255.0)
            else:
                glow_source = mask * np.array(color).reshape(1, 1, 3) / 255.0
        else:
            # Use bright parts of image
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            _, bright_mask = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
            glow_source = cv2.cvtColor(bright_mask, cv2.COLOR_GRAY2BGR)
        
        # Create multiple blur levels for glow
        glow = np.zeros_like(image, dtype=np.float32)
        
        for i in range(1, 4):
            blur_size = self.config.glow_radius * i
            kernel_size = blur_size * 2 + 1
            
            blurred = cv2.GaussianBlur(glow_source, (kernel_size, kernel_size), blur_size)
            glow += blurred / (i * 2)
        
        # Normalize and apply intensity
        if glow.max() > 0:
            glow = glow / glow.max()
        glow *= self.config.glow_intensity * 255
        
        # Add glow to original image
        result = image.astype(np.float32) + glow
        
        return np.clip(result, 0, 255).astype(np.uint8)
    
    def chromatic_aberration(self, image: np.ndarray,
                           shift: Optional[float] = None) -> np.ndarray:
        """
        Apply chromatic aberration effect.
        
        Args:
            image: Input image
            shift: Pixel shift amount
            
        Returns:
            Image with chromatic aberration
        """
        shift = shift or self.config.chromatic_shift
        h, w = image.shape[:2]
        
        # Split channels
        b, g, r = cv2.split(image)
        
        # Create radial shift
        center_x, center_y = w // 2, h // 2
        
        # Shift red channel outward
        M_r = np.float32([[1 + shift/w, 0, -shift], [0, 1 + shift/h, -shift]])
        r_shifted = cv2.warpAffine(r, M_r, (w, h))
        
        # Shift blue channel inward
        M_b = np.float32([[1 - shift/w, 0, shift], [0, 1 - shift/h, shift]])
        b_shifted = cv2.warpAffine(b, M_b, (w, h))
        
        # Merge channels
        result = cv2.merge([b_shifted, g, r_shifted])
        
        return result
    
    def add_vignette(self, image: np.ndarray,
                    strength: Optional[float] = None) -> np.ndarray:
        """
        Add vignette effect to image.
        
        Args:
            image: Input image
            strength: Vignette strength (0-1)
            
        Returns:
            Image with vignette
        """
        strength = strength or self.config.vignette_strength
        h, w = image.shape[:2]
        
        # Create radial gradient
        center_x, center_y = w // 2, h // 2
        Y, X = np.ogrid[:h, :w]
        
        # Calculate distance from center
        dist = np.sqrt((X - center_x)**2 + (Y - center_y)**2)
        max_dist = np.sqrt(center_x**2 + center_y**2)
        
        # Normalize and create vignette mask
        vignette = 1 - (dist / max_dist) * strength
        vignette = np.clip(vignette, 0, 1)
        
        # Apply vignette
        vignette_3ch = np.repeat(vignette[:, :, np.newaxis], 3, axis=2)
        result = image * vignette_3ch
        
        return np.clip(result, 0, 255).astype(np.uint8)
    
    def add_film_grain(self, image: np.ndarray,
                      intensity: Optional[float] = None) -> np.ndarray:
        """
        Add film grain effect to image.
        
        Args:
            image: Input image
            intensity: Grain intensity
            
        Returns:
            Image with film grain
        """
        intensity = intensity or self.config.grain_intensity
        
        # Generate grain
        h, w = image.shape[:2]
        grain = np.random.randn(h, w, 3) * intensity * 255
        
        # Add grain to image
        result = image.astype(np.float32) + grain
        
        return np.clip(result, 0, 255).astype(np.uint8)
    
    def motion_blur(self, image: np.ndarray,
                   angle: Optional[float] = None,
                   size: Optional[int] = None) -> np.ndarray:
        """
        Apply directional motion blur.
        
        Args:
            image: Input image
            angle: Blur angle in degrees
            size: Blur kernel size
            
        Returns:
            Motion blurred image
        """
        angle = angle or self.config.motion_blur_angle
        size = size or self.config.motion_blur_size
        
        # Create motion blur kernel
        kernel = np.zeros((size, size))
        kernel[int((size-1)/2), :] = np.ones(size)
        kernel = kernel / size
        
        # Rotate kernel
        M = cv2.getRotationMatrix2D((size/2, size/2), angle, 1)
        kernel = cv2.warpAffine(kernel, M, (size, size))
        
        # Apply kernel
        result = cv2.filter2D(image, -1, kernel)
        
        return result


class CompositeEffects:
    """Advanced compositing effects."""
    
    def __init__(self):
        self.logger = setup_logger(f"{__name__}.CompositeEffects")
        self.bg_effects = BackgroundEffects()
        
    def smart_composite(self, foreground: np.ndarray,
                       background: np.ndarray,
                       mask: np.ndarray,
                       effects: List[EffectType]) -> np.ndarray:
        """
        Apply smart compositing with multiple effects.
        
        Args:
            foreground: Foreground image
            background: Background image
            mask: Alpha mask
            effects: List of effects to apply
            
        Returns:
            Composited image with effects
        """
        result = background.copy()
        
        # Ensure mask is proper format
        if len(mask.shape) == 2:
            mask_3ch = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
        else:
            mask_3ch = mask
        
        if mask_3ch.max() > 1:
            mask_3ch = mask_3ch / 255.0
        
        # Apply background effects
        for effect in effects:
            if effect == EffectType.BLUR:
                result = self.bg_effects.apply_blur(result, mask=1-mask_3ch[:,:,0])
            elif effect == EffectType.BOKEH:
                result = self.bg_effects.apply_bokeh(result)
            elif effect == EffectType.VIGNETTE:
                result = self.bg_effects.add_vignette(result)
        
        # Apply light wrap before compositing
        if EffectType.LIGHT_WRAP in effects:
            foreground = self.bg_effects.apply_light_wrap(
                foreground, result, mask_3ch[:,:,0]
            )
        
        # Composite foreground
        result = result * (1 - mask_3ch) + foreground * mask_3ch
        result = result.astype(np.uint8)
        
        # Apply post-composite effects
        if EffectType.SHADOW in effects:
            result = self.bg_effects.add_shadow(result, mask_3ch[:,:,0])
        
        if EffectType.REFLECTION in effects:
            result = self.bg_effects.add_reflection(result, mask_3ch[:,:,0])
        
        if EffectType.GLOW in effects:
            result = self.bg_effects.add_glow(result, mask_3ch[:,:,0])
        
        # Apply final touches
        if EffectType.CHROMATIC_ABERRATION in effects:
            result = self.bg_effects.chromatic_aberration(result)
        
        if EffectType.FILM_GRAIN in effects:
            result = self.bg_effects.add_film_grain(result)
        
        return result
    
    def color_harmonization(self, foreground: np.ndarray,
                          background: np.ndarray,
                          mask: np.ndarray,
                          strength: float = 0.3) -> np.ndarray:
        """
        Harmonize colors between foreground and background.
        
        Args:
            foreground: Foreground image
            background: Background image
            mask: Foreground mask
            strength: Harmonization strength
            
        Returns:
            Color-harmonized foreground
        """
        # Calculate background color statistics
        bg_mean = np.mean(background, axis=(0, 1))
        bg_std = np.std(background, axis=(0, 1))
        
        # Calculate foreground color statistics
        fg_mean = np.mean(foreground, axis=(0, 1))
        fg_std = np.std(foreground, axis=(0, 1))
        
        # Adjust foreground colors
        result = foreground.astype(np.float32)
        
        for i in range(3):  # For each color channel
            # Normalize foreground
            result[:, :, i] = (result[:, :, i] - fg_mean[i]) / (fg_std[i] + 1e-6)
            
            # Apply background statistics
            result[:, :, i] = result[:, :, i] * (bg_std[i] * strength + fg_std[i] * (1 - strength))
            result[:, :, i] += bg_mean[i] * strength + fg_mean[i] * (1 - strength)
        
        return np.clip(result, 0, 255).astype(np.uint8)