File size: 3,364 Bytes
ef24f03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
from __future__ import annotations
from pathlib import Path
from typing import List, Tuple
import time, random
import numpy as np
from PIL import Image, ImageFilter, ImageOps
TMP_DIR = Path("/tmp/bgfx"); TMP_DIR.mkdir(parents=True, exist_ok=True)
_PALETTES = {
"office": [(240,245,250),(210,220,230),(180,190,200)],
"studio": [(18,18,20),(32,32,36),(58,60,64)],
"sunset": [(255,183,77),(255,138,101),(244,143,177)],
"forest": [(46,125,50),(102,187,106),(165,214,167)],
"ocean": [(33,150,243),(3,169,244),(0,188,212)],
"minimal": [(245,246,248),(230,232,236),(214,218,224)],
"warm": [(255,224,178),(255,204,128),(255,171,145)],
"cool": [(197,202,233),(179,229,252),(178,235,242)],
"royal": [(63,81,181),(121,134,203),(159,168,218)],
}
def _save_pil(img: Image.Image, stem: str = "ai_bg", ext: str = "png") -> str:
ts = int(time.time() * 1000)
p = TMP_DIR / f"{stem}_{ts}.{ext}"
img.save(p)
return str(p)
def _palette_from_prompt(prompt: str) -> List[tuple]:
p = (prompt or "").lower()
for key, pal in _PALETTES.items():
if key in p:
return pal
random.seed(hash(p) % (2**32 - 1))
return [tuple(random.randint(90, 200) for _ in range(3)) for _ in range(3)]
def _perlin_like_noise(h: int, w: int, octaves: int = 4) -> np.ndarray:
acc = np.zeros((h, w), dtype=np.float32)
for o in range(octaves):
scale = 2 ** o
small = np.random.rand(h // scale + 1, w // scale + 1).astype(np.float32)
small = Image.fromarray((small * 255).astype(np.uint8)).resize((w, h), Image.BILINEAR)
acc += np.array(small, dtype=np.float32) / 255.0 / (o + 1)
acc /= max(1e-6, acc.max())
return acc
def _blend_palette(noise: np.ndarray, palette: List[tuple]) -> Image.Image:
h, w = noise.shape
img = np.zeros((h, w, 3), dtype=np.float32)
t1, t2 = 0.33, 0.66
c0, c1, c2 = [np.array(c, dtype=np.float32) for c in palette]
m0, m1, m2 = noise < t1, (noise >= t1) & (noise < t2), noise >= t2
img[m0], img[m1], img[m2] = c0, c1, c2
return Image.fromarray(np.clip(img, 0, 255).astype(np.uint8))
def generate_ai_background(
prompt: str, width: int = 1280, height: int = 720,
bokeh: float = 0.0, vignette: float = 0.15, contrast: float = 1.05
) -> Tuple[Image.Image, str]:
palette = _palette_from_prompt(prompt)
noise = _perlin_like_noise(height, width, octaves=4)
img = _blend_palette(noise, palette)
if bokeh > 0:
img = img.filter(ImageFilter.GaussianBlur(radius=max(0, min(50, bokeh))))
if vignette > 0:
import numpy as np
base = np.array(img).astype(np.float32) / 255.0
y, x = np.ogrid[:height, :width]
cx, cy = width / 2, height / 2
r = np.sqrt((x - cx) ** 2 + (y - cy) ** 2)
mask = 1 - np.clip(r / (max(width, height) / 1.2), 0, 1)
mask = (mask ** 2) * (1 - vignette) + vignette
out = base * mask[..., None]
img = Image.fromarray(np.clip(out * 255, 0, 255).astype(np.uint8))
if contrast != 1.0:
img = ImageOps.autocontrast(img, cutoff=1)
arr = np.array(img).astype(np.float32)
mean = arr.mean(axis=(0, 1), keepdims=True)
arr = (arr - mean) * float(contrast) + mean
img = Image.fromarray(np.clip(arr, 0, 255).astype(np.uint8))
path = _save_pil(img)
return img, path
|