import yaml import fitz import torch import gradio as gr from PIL import Image from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain.document_loaders import PyPDFLoader from langchain.prompts import PromptTemplate from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import spaces from langchain_text_splitters import CharacterTextSplitter,RecursiveCharacterTextSplitter class PDFChatBot: def __init__(self, config_path="config.yaml"): """ Initialize the PDFChatBot instance. Parameters: config_path (str): Path to the configuration file (default is "../config.yaml"). """ self.processed = False self.page = 0 self.chat_history = [] # Initialize other attributes to None self.prompt = None self.documents = None self.embeddings = None self.vectordb = None self.tokenizer = None self.model = None self.pipeline = None self.chain = None self.chunk_size = None self.current_context = None self.format_seperator="""\n\n--\n\n""" #self.chunk_size_slider = chunk_size_slider def load_embeddings(self): self.embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") print("Embedding model loaded") def load_vectordb(self): text_splitter = RecursiveCharacterTextSplitter( chunk_size=256, chunk_overlap=100, length_function=len, add_start_index=True, ) docs = text_splitter.split_documents(self.documents) self.vectordb = Chroma.from_documents(docs, self.embeddings) print("Vector store created") @spaces.GPU def load_tokenizer(self): self.tokenizer = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") @spaces.GPU def create_organic_pipeline(self): self.pipeline = pipeline( "text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"torch_dtype": torch.bfloat16}, device="cuda", ) self.load_tokenizer() print("Model pipeline loaded") def get_organic_context(self, query): documents = self.vectordb.similarity_search_with_relevance_scores(query, k=3) context = self.format_seperator.join([doc.page_content for doc, score in documents]) self.current_context = context print("Context Ready") print(self.current_context) @spaces.GPU def create_organic_response(self, history, query): self.get_organic_context(query) tokenizer = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") messages = [ {"role": "system", "content": "From the the contained given below, answer the question of user \n " + self.current_context}, {"role": "user", "content": query}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) temp = 0.1 outputs = self.pipeline( prompt, max_new_tokens=1024, do_sample=True, temperature=temp, top_p=0.9, ) return outputs[0]["generated_text"][len(prompt):] def process_file(self, file): """ Process the uploaded PDF file and initialize necessary components: Tokenizer, VectorDB and LLM. Parameters: file (FileStorage): The uploaded PDF file. """ self.documents = PyPDFLoader(file.name).load() self.load_embeddings() self.load_vectordb() #self.create_chain() @spaces.GPU def generate_response(self, history, query, file): if not query: raise gr.Error(message='Submit a question') if not file: raise gr.Error(message='Upload a PDF') if not self.processed: self.process_file(file) self.processed = True result = self.create_organic_response(history="",query=query) return result,"" def render_file(self, file,chunk_size): print(chunk_size) doc = fitz.open(file.name) page = doc[self.page] self.chunk_size = chunk_size pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72)) image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples) return image def add_text(self, history, text): """ Add user-entered text to the chat history. Parameters: history (list): List of chat history tuples. text (str): User-entered text. Returns: list: Updated chat history. """ if not text: raise gr.Error('Enter text') history.append((text, '')) return history