import gradio as gr import os import time import spaces import torch import re import gradio as gr from threading import Thread from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM from PIL import Image import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) model_id = "vikhyatk/moondream2" revision = "2024-04-02" tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) moondream = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, revision=revision, torch_dtype=torch.bfloat16, device_map={"": "cuda"}, attn_implementation="flash_attention_2" ) moondream.eval() def print_like_dislike(x: gr.LikeData): print(x.index, x.value, x.liked) def add_message(history, message): # Handle image and text input if message["files"]: for x in message["files"]: history.append(((x,), None)) if message["text"] is not None: history.append((message["text"], None)) return history, gr.MultimodalTextbox(value=None, interactive=False) @spaces.GPU(duration=10) def bot(history): # Reverse search through the last 5 messages for an image file last_five_messages = history[-5:] # Get the last five messages image_path = None last_message = None for message in last_five_messages: if isinstance(message[0], tuple) and isinstance(message[0][0], str): image_path = message[0][0] if isinstance(message[0],str): last_message = message[0] if image_path: try: image = Image.open(image_path) # Try to open the image using Pillow image_embeds = moondream.encode_image(image) print(image_embeds.shape) response = moondream.answer_question(image_embeds, last_message, tokenizer) except IOError: response = "Failed to open image. Please check the image path or file permissions." else: image_embeds = torch.zeros(1, 729, 2048, dtype=torch.bfloat16, device='cuda') response = moondream.answer_question(image_embeds, last_message, tokenizer) history[-1][1] = "" for character in response: history[-1][1] += character yield history with gr.Blocks(theme="Monochrome") as demo: gr.Markdown( """ # AskMoondream: Moondream 2 Demonstration Space Moondream2 is a 1.86B parameter model initialized with weights from SigLIP and Phi 1.5. Modularity AI presents this open source huggingface space for running fast experimental inferences on Moondream2. """ ) chatbot = gr.Chatbot( [], elem_id="chatbot", bubble_full_width=False ) chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) chat_msg = chat_input.submit(add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input]) bot_msg = chat_msg.then(bot, inputs=chatbot, outputs=chatbot, api_name="bot_response") bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, outputs=[chat_input]) chatbot.like(print_like_dislike, None, None) demo.queue() demo.launch()