import threading from functions import extract_text_from_pdf, get_most_similar_job from fastapi import UploadFile, HTTPException, FastAPI import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from transformers import pipeline summarizer = pipeline("summarization", model="facebook/bart-large-cnn") print("\n\n definition 2") df = pd.read_csv("all.csv") concatenated_column = pd.concat([df['job_title'] + df['job_description'] + df['job_requirements'], df['city_name']], axis=1).astype(str).agg(''.join, axis=1) x = concatenated_column y = df["label"] vectorizer = TfidfVectorizer(stop_words='english') print("df done") vectorizer.fit(x) df_vect = vectorizer.transform(x) # Initialize the summarizer model ######### using summarizer model summ_data = [] print("start api code") app = FastAPI(project_name="cv") @app.get("/") async def read_root(): return {"Hello": "World, Project name is : CV Description"} @app.post("/prediction") async def detect(cv: UploadFile, number_of_jobs: int): print("pf") if (type(number_of_jobs) != int) or (number_of_jobs < 1) or (number_of_jobs > df.shape[0]): raise HTTPException( status_code=415, detail = f"Please enter the number of jobs you want as an ' integer from 1 to {int(df.shape[0]) - 1} '." ) if cv.filename.split(".")[-1] not in ("pdf") : raise HTTPException( status_code=415, detail="Please inter PDF file " ) print("pf2") summ_data =[] cv_data = extract_text_from_pdf(await cv.read()) index = len(cv_data)//3 text = [cv_data[:index], cv_data[index:2*index], cv_data[2*index:]] for i in text: part = summarizer(i, max_length=150, min_length=30, do_sample=False) summ_data.append(part[0]["summary_text"].replace("\xa0", "")) print("pf3") data = " .".join(summ_data) summ_data.clear() cv_vect = vectorizer.transform([data]) indices = get_most_similar_job(data=data, cv_vect=cv_vect, df_vect=df_vect) # Check if all threads have finished print("ALL Done \n\n") prediction_data = df.iloc[indices[:number_of_jobs]].applymap(lambda x: str(x)).to_dict(orient='records') return {"prediction": prediction_data}