MoDongbao's picture
Upload 79 files
e638625
raw
history blame
4.99 kB
from toolbox import CatchException, update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
import requests
from bs4 import BeautifulSoup
from request_llm.bridge_all import model_info
def google(query, proxies):
query = query # 在此处替换您要搜索的关键词
url = f"https://www.google.com/search?q={query}"
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36'}
response = requests.get(url, headers=headers, proxies=proxies)
soup = BeautifulSoup(response.content, 'html.parser')
results = []
for g in soup.find_all('div', class_='g'):
anchors = g.find_all('a')
if anchors:
link = anchors[0]['href']
if link.startswith('/url?q='):
link = link[7:]
if not link.startswith('http'):
continue
title = g.find('h3').text
item = {'title': title, 'link': link}
results.append(item)
for r in results:
print(r['link'])
return results
def scrape_text(url, proxies) -> str:
"""Scrape text from a webpage
Args:
url (str): The URL to scrape text from
Returns:
str: The scraped text
"""
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
'Content-Type': 'text/plain',
}
try:
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
except:
return "无法连接到该网页"
soup = BeautifulSoup(response.text, "html.parser")
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = "\n".join(chunk for chunk in chunks if chunk)
return text
@CatchException
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该模板可以实现ChatGPT联网信息综合。该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板。您若希望分享新的功能模组,请不吝PR!"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
# ------------- < 第1步:爬取搜索引擎的结果 > -------------
from toolbox import get_conf
proxies, = get_conf('proxies')
urls = google(txt, proxies)
history = []
# ------------- < 第2步:依次访问网页 > -------------
max_search_result = 5 # 最多收纳多少个网页的结果
for index, url in enumerate(urls[:max_search_result]):
res = scrape_text(url['link'], proxies)
history.extend([f"第{index}份搜索结果:", res])
chatbot.append([f"第{index}份搜索结果:", res[:500]+"......"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
# ------------- < 第3步:ChatGPT综合 > -------------
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
inputs=i_say,
history=history,
max_token_limit=model_info[llm_kwargs['llm_model']]['max_token']*3//4
)
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
)
chatbot[-1] = (i_say, gpt_say)
history.append(i_say);history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新