import numpy as np from PIL import Image from transformers import ViltConfig, ViltProcessor, ViltForQuestionAnswering import streamlit as st st.title("Live demo of multimodal vqa") config = ViltConfig.from_pretrained("dandelin/vilt-b32-finetuned-vqa") processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") model = ViltForQuestionAnswering.from_pretrained("Minqin/carets_vqa_finetuned") uploaded_file = st.file_uploader("Please upload one image (jpg)", type="jpg") question = st.text_input("Type here one question on the image") if uploaded_file is not None: file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) img = Image.fromarray(file_bytes) # st.image(img, caption="Here is the uploaded image", use_column_width=True) encoding = processor(images=file_bytes, text=question, return_tensors="pt") outputs = model(**encoding) logits = outputs.logits idx = logits.argmax(-1).item() pred = model.config.id2label[idx] st.text(f"Answer: {pred}")