"""Various functions to deprecate features.""" import warnings def install(*args, **kwargs): del args, kwargs warnings.warn( "The `install` function has been removed. " "PySR now uses the `juliacall` package to install its dependencies automatically at import time. " ) def init_julia(*args, **kwargs): del args, kwargs warnings.warn( "The `init_julia` function has been removed. " "Julia is now initialized automatically at import time." ) def pysr(X, y, weights=None, **kwargs): # pragma: no cover from .sr import PySRRegressor warnings.warn( "Calling `pysr` is deprecated. " "Please use `model = PySRRegressor(**params); " "model.fit(X, y)` going forward.", FutureWarning, ) model = PySRRegressor(**kwargs) model.fit(X, y, weights=weights) return model.equations_ def best(*args, **kwargs): # pragma: no cover raise NotImplementedError( "`best` has been deprecated. " "Please use the `PySRRegressor` interface. " "After fitting, you can return `.sympy()` " "to get the sympy representation " "of the best equation." ) def best_row(*args, **kwargs): # pragma: no cover raise NotImplementedError( "`best_row` has been deprecated. " "Please use the `PySRRegressor` interface. " "After fitting, you can run `print(model)` to view the best equation, " "or " "`model.get_best()` to return the best equation's " "row in `model.equations_`." ) def best_tex(*args, **kwargs): # pragma: no cover raise NotImplementedError( "`best_tex` has been deprecated. " "Please use the `PySRRegressor` interface. " "After fitting, you can return `.latex()` to " "get the sympy representation " "of the best equation." ) def best_callable(*args, **kwargs): # pragma: no cover raise NotImplementedError( "`best_callable` has been deprecated. Please use the `PySRRegressor` " "interface. After fitting, you can use " "`.predict(X)` to use the best callable." ) DEPRECATED_KWARGS = { "fractionReplaced": "fraction_replaced", "fractionReplacedHof": "fraction_replaced_hof", "npop": "population_size", "hofMigration": "hof_migration", "shouldOptimizeConstants": "should_optimize_constants", "weightAddNode": "weight_add_node", "weightDeleteNode": "weight_delete_node", "weightDoNothing": "weight_do_nothing", "weightInsertNode": "weight_insert_node", "weightMutateConstant": "weight_mutate_constant", "weightMutateOperator": "weight_mutate_operator", "weightSwapOperands": "weight_swap_operands", "weightRandomize": "weight_randomize", "weightSimplify": "weight_simplify", "crossoverProbability": "crossover_probability", "perturbationFactor": "perturbation_factor", "batchSize": "batch_size", "warmupMaxsizeBy": "warmup_maxsize_by", "useFrequency": "use_frequency", "useFrequencyInTournament": "use_frequency_in_tournament", "ncyclesperiteration": "ncycles_per_iteration", "loss": "elementwise_loss", "full_objective": "loss_function", }