- The Algorithm: - Creating the Search Space: - binary_operators - unary_operators - maxsize - maxdepth - Setting the Search Size: - niterations - populations - population_size - ncyclesperiteration - The Objective: - loss - model_selection - Working with Complexities: - parsimony - constraints - nested_constraints - complexity_of_operators - complexity_of_constants - complexity_of_variables - warmup_maxsize_by - use_frequency - use_frequency_in_tournament - adaptive_parsimony_scaling - should_simplify - Mutations: - weight_add_node - weight_insert_node - weight_delete_node - weight_do_nothing - weight_mutate_constant - weight_mutate_operator - weight_randomize - weight_simplify - weight_optimize - crossover_probability - annealing - alpha - perturbation_factor - skip_mutation_failures - Tournament Selection: - tournament_selection_n - tournament_selection_p - Constant Optimization: - optimizer_algorithm - optimizer_nrestarts - optimize_probability - optimizer_iterations - should_optimize_constants - Migration between Populations: - fraction_replaced - fraction_replaced_hof - migration - hof_migration - topn - Data Preprocessing: - denoise - select_k_features - Stopping Criteria: - max_evals - timeout_in_seconds - early_stop_condition - Performance and Parallelization: - procs - multithreading - cluster_manager - batching - batch_size - precision - fast_cycle - turbo - random_state - deterministic - warm_start - Monitoring: - verbosity - update_verbosity - progress - Environment: - temp_equation_file - tempdir - delete_tempfiles - julia_project - update - julia_kwargs - Exporting the Results: - equation_file - output_jax_format - output_torch_format - extra_sympy_mappings - extra_torch_mappings - extra_jax_mappings