import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # Set the environment variable os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' DESCRIPTION = """\ # Llama 3.2 3B Instruct Llama 3.2 3B is Meta's latest iteration of open LLMs. This is a demo of [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), fine-tuned for instruction following. For more details, please check [our post](https://huggingface.co/blog/llama32). """ # Access token for the model (if required) access_token = os.getenv('HF_TOKEN') # Download the Base model #model_id = "./models/Llama-32-3B-Instruct" model_id = "nvidia/Llama-3_1-Nemotron-51B-Instruct" MAX_MAX_NEW_TOKENS = 6144 DEFAULT_MAX_NEW_TOKENS = 6144 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "6144")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #model_id = "nltpt/Llama-3.2-3B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id,token=access_token) #tokenizer.padding_side = 'right' #tokenizer.eos_token_id = 107 #tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_id, device_map=device, torch_dtype=torch.bfloat16, token=access_token ) model.eval() @spaces.GPU(duration=90) def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [{"role": "system", "content": system_prompt}] for user, assistant in chat_history: conversation.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) conversation.append({"role": "user", "content": message}) # Set pad_token_id if it's not already set if tokenizer.pad_token_id is None: tokenizer.padding_side = 'right' tokenizer.pad_token = tokenizer.eos_token input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True,add_special_tokens=True, return_tensors="pt",padding=True ,return_attention_mask=True) if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") # Ensure attention mask is set #attention_mask = input_ids['attention_mask'] input_ids = input_ids.to(model.device) #attention_mask = attention_mask.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=2000.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox( label="System Prompt", placeholder="Enter system prompt here...", lines=2, ), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["Hello there! How are you doing?"], ["Can you explain briefly to me what is the Python programming language?"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], cache_examples=False, ) with gr.Blocks(css="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()