import codecs import csv import http.client import os import re import sys import urllib.request from datetime import date, timedelta from io import StringIO import pandas as pd PAST_WEATHER_DATA_FILE = "past_weather_data.csv" PAST_POLLUTION_DATA_FILE = "past_pollution_data.csv" def update_past_weather_data(): last_year_date = date.today() - timedelta(days=365) if os.path.exists(PAST_WEATHER_DATA_FILE): df = pd.read_csv(PAST_WEATHER_DATA_FILE) start_date = pd.to_datetime(df["date"]).max().date().isoformat() end_date = (last_year_date + timedelta(days=2)).isoformat() else: df = pd.DataFrame() start_date = (last_year_date - timedelta(days=8)).isoformat() end_date = (last_year_date + timedelta(days=2)).isoformat() try: ResultBytes = urllib.request.urlopen( f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_date}/{end_date}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv" ) CSVText = csv.reader(codecs.iterdecode(ResultBytes, "utf-8")) data = pd.DataFrame(list(CSVText)) data.columns = data.iloc[0] data = data[1:] data = data.rename(columns={"datetime": "date"}) updated_df = pd.concat([df, data], ignore_index=True) updated_df.drop_duplicates(subset="date", keep="last", inplace=True) updated_df.to_csv(PAST_WEATHER_DATA_FILE, index=False) except urllib.error.HTTPError as e: ErrorInfo = e.read().decode() print("Error code: ", e.code, ErrorInfo) sys.exit() except urllib.error.URLError as e: ErrorInfo = e.read().decode() print("Error code: ", e.code, ErrorInfo) sys.exit() def update_past_pollution_data(): O3 = [] NO2 = [] particles = ["NO2", "O3"] stations = ["NL10636", "NL10639", "NL10643"] all_dataframes = [] last_year_date = date.today() - timedelta(days=365) if os.path.exists(PAST_POLLUTION_DATA_FILE): existing_data = pd.read_csv(PAST_POLLUTION_DATA_FILE) last_date = pd.to_datetime(existing_data["date"]).max() if last_date >= pd.to_datetime(last_year_date): print("Data is already up to date.") return else: start_date = last_date.date() end_date = last_year_date + timedelta(days=3) else: existing_data = pd.DataFrame() start_date = last_year_date - timedelta(days=7) end_date = last_year_date + timedelta(days=3) date_list = [ start_date + timedelta(days=x) for x in range((end_date - start_date).days + 1) ] for current_date in date_list: today = current_date.isoformat() + "T09:00:00Z" yesterday = (current_date - timedelta(1)).isoformat() + "T09:00:00Z" for particle in particles: all_dataframes = [] # Reset for each particle for station in stations: conn = http.client.HTTPSConnection("api.luchtmeetnet.nl") payload = "" headers = {} conn.request( "GET", f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}", payload, headers, ) res = conn.getresponse() data = res.read() decoded_data = data.decode("utf-8") df = pd.read_csv(StringIO(decoded_data)) df = df.filter(like="value") all_dataframes.append(df) combined_data = pd.concat(all_dataframes, ignore_index=True) values = [] for row in combined_data: cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", row) if cleaned_value: values.append(float(cleaned_value[0])) if values: avg = sum(values) / len(values) if particle == "NO2": NO2.append(avg) else: O3.append(avg) new_data = pd.DataFrame( { "date": date_list, "NO2": NO2, "O3": O3, } ) updated_data = pd.concat([existing_data, new_data], ignore_index=True) updated_data.drop_duplicates(subset="date", keep="last", inplace=True) updated_data.to_csv(PAST_POLLUTION_DATA_FILE, index=False) return NO2, O3 def get_past_combined_data(): update_past_weather_data() update_past_pollution_data() combined_df = pd.read_csv(PAST_WEATHER_DATA_FILE) pollution_data = pd.read_csv(PAST_POLLUTION_DATA_FILE) combined_df["NO2"] = pollution_data["NO2"] combined_df["O3"] = pollution_data["O3"] # Apply scaling and renaming similar to the scale function from previous code combined_df = combined_df.rename( columns={ "date": "date", "windspeed": "wind_speed", "temp": "mean_temp", "solarradiation": "global_radiation", "precip": "percipitation", "sealevelpressure": "pressure", "visibility": "minimum_visibility", } ) combined_df["date"] = pd.to_datetime(combined_df["date"]) combined_df["weekday"] = combined_df["date"].dt.day_name() combined_df["wind_speed"] = combined_df["wind_speed"].astype(float) combined_df["mean_temp"] = combined_df["mean_temp"].astype(float) combined_df["minimum_visibility"] = combined_df["minimum_visibility"].astype(float) combined_df["percipitation"] = combined_df["percipitation"].astype(float) combined_df["pressure"] = combined_df["pressure"].astype(float).round() combined_df["humidity"] = combined_df["humidity"].astype(float).round() combined_df["global_radiation"] = combined_df["global_radiation"].astype(float) combined_df["wind_speed"] = (combined_df["wind_speed"] / 3.6) * 10 combined_df["mean_temp"] = combined_df["mean_temp"] * 10 combined_df["minimum_visibility"] = combined_df["minimum_visibility"] * 10 combined_df["percipitation"] = combined_df["percipitation"] * 10 combined_df["pressure"] = combined_df["pressure"] * 10 combined_df["wind_speed"] = ( combined_df["wind_speed"].astype(float).round().astype(int) ) combined_df["mean_temp"] = ( combined_df["mean_temp"].astype(float).round().astype(int) ) combined_df["minimum_visibility"] = ( combined_df["minimum_visibility"].astype(float).round().astype(int) ) combined_df["percipitation"] = ( combined_df["percipitation"].astype(float).round().astype(int) ) combined_df["pressure"] = combined_df["pressure"].astype(float).round().astype(int) combined_df["humidity"] = combined_df["humidity"].astype(float).round().astype(int) combined_df["global_radiation"] = ( combined_df["global_radiation"].astype(float).round().astype(int) ) return combined_df