import os from datetime import date, datetime, timedelta import joblib import pandas as pd import torch from dotenv import load_dotenv from huggingface_hub import hf_hub_download, login from src.data_api_calls import ( get_combined_data, update_pollution_data, update_weather_data, ) from src.features_pipeline import create_features load_dotenv() login(token=os.getenv("HUGGINGFACE_DOWNLOAD_TOKEN")) def load_nn(): import torch.nn as nn from huggingface_hub import PyTorchModelHubMixin class AirPollutionNet(nn.Module, PyTorchModelHubMixin): def __init__(self, input_size, layers, dropout_rate): super(AirPollutionNet, self).__init__() self.layers_list = nn.ModuleList() in_features = input_size for units in layers: self.layers_list.append(nn.Linear(in_features, units)) self.layers_list.append(nn.ReLU()) self.layers_list.append(nn.Dropout(p=dropout_rate)) in_features = units self.output = nn.Linear(in_features, 3) # Output size is 3 for next 3 days def forward(self, x): for layer in self.layers_list: x = layer(x) x = self.output(x) return x model = AirPollutionNet.from_pretrained( "akseljoonas/Utrecht_pollution_forecasting_NO2" ) return model def load_model(particle): repo_id = f"elisaklunder/Utrecht-{particle}-Forecasting-Model" if particle == "O3": file_name = "O3_svr_model.pkl" model_path = hf_hub_download(repo_id=repo_id, filename=file_name) model = joblib.load(model_path) else: model = load_nn() return model def run_model(particle, data): input_data = create_features(data=data, target_particle=particle) model = load_model(particle) if particle == "NO2": with torch.no_grad(): prediction = model(torch.tensor(input_data.values, dtype=torch.float32)) repo_id = "akseljoonas/Utrecht_pollution_forecasting_NO2" file_name = "target_scaler_NO2.joblib" path = hf_hub_download(repo_id=repo_id, filename=file_name) else: prediction = model.predict(input_data) repo_id = f"elisaklunder/Utrecht-{particle}-Forecasting-Model" file_name = f"target_scaler_{particle}.joblib" path = hf_hub_download(repo_id=repo_id, filename=file_name) target_scaler = joblib.load(path) prediction = target_scaler.inverse_transform(prediction) return prediction def update_data_and_predictions(): update_weather_data() update_pollution_data() week_data = get_combined_data() o3_predictions = run_model("O3", data=week_data) no2_predictions = run_model("NO2", data=week_data) prediction_data = [] for i in range(3): prediction_data.append( { "pollutant": "O3", "date_predicted": date.today(), "date": date.today() + timedelta(days=i + 1), "prediction_value": o3_predictions[0][i], } ) prediction_data.append( { "pollutant": "NO2", "date_predicted": date.today(), "date": date.today() + timedelta(days=i + 1), "prediction_value": no2_predictions[0][i], } ) predictions_df = pd.DataFrame(prediction_data) PREDICTIONS_FILE = "predictions_history.csv" if os.path.exists(PREDICTIONS_FILE): existing_data = pd.read_csv(PREDICTIONS_FILE) # Filter out predictions made today to avoid duplicates existing_data = existing_data[ ~(existing_data["date_predicted"] == str(date.today())) ] combined_data = pd.concat([existing_data, predictions_df]) combined_data.drop_duplicates() else: combined_data = predictions_df combined_data.to_csv(PREDICTIONS_FILE, index=False) def get_data_and_predictions(): week_data = get_combined_data() PREDICTIONS_FILE = "predictions_history.csv" data = pd.read_csv(PREDICTIONS_FILE) today = datetime.today().strftime("%Y-%m-%d") today_predictions = data[(data["date_predicted"] == today)] # Extract predictions for O3 and NO2 o3_predictions = today_predictions[today_predictions["pollutant"] == "O3"][ "prediction_value" ].values no2_predictions = today_predictions[today_predictions["pollutant"] == "NO2"][ "prediction_value" ].values return week_data, [o3_predictions], [no2_predictions] if __name__=="__main__": update_data_and_predictions()