import os import joblib import pandas as pd import streamlit as st from dotenv import load_dotenv from huggingface_hub import hf_hub_download, login def load_model(particle): load_dotenv() login(token=os.getenv("HUGGINGFACE_DOWNLOAD_TOKEN")) repo_id = f"elisaklunder/Utrecht-{particle}-Forecasting-Model" if particle == "O3": file_name = "O3_svr_model.pkl" elif particle == "NO2": file_name == "hehehe" model_path = hf_hub_download(repo_id=repo_id, filename=file_name) model = joblib.load(model_path) return model @st.cache_resource(ttl=6 * 300) # Reruns every 6 hours def run_model(particle): model = load_model(particle) # Static input values input_data = pd.DataFrame( {"Temperature": [20.0], "Wind Speed": [10.0], "Humidity": [50.0]} ) # Run the model with static input prediction = model.predict(input_data) return prediction