from dotenv import load_dotenv import os load_dotenv() OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_text_splitters import Language from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain_openai import ChatOpenAI from langchain.chains import RetrievalQA import chromadb import gradio as gr import tqdm def read_file(file_path): with open(file_path, "r", encoding="utf-8") as file: return file.read() def infer_module_name(file_path): path_parts = file_path.split(os.sep) if "src" in path_parts: src_index = path_parts.index("src") return "/".join(path_parts[src_index+1:-1]) return "root" def process_files(root_dir, file_extension, language=None): if language: splitter = RecursiveCharacterTextSplitter.from_language( language=language, chunk_size=1000, chunk_overlap=100 ) else: splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=100 ) all_docs = [] for root, _, files in os.walk(root_dir): for file in files: if file.endswith(file_extension): file_path = os.path.join(root, file) file_name = os.path.basename(file_path) folder_path = root module_name = infer_module_name(file_path) content = read_file(file_path) content = f"file name: {file_name}\n path: {module_name}\n {content}" docs = splitter.create_documents( [content], metadatas=[{ 'source': file_name, 'type': file_extension[1:], 'module': module_name, # Add module name as metadata 'folder_path': folder_path }] ) all_docs.extend(docs) return all_docs def process_all_files(root_directory): ts_docs = process_files(root_directory, '.ts', Language.TS) html_docs = process_files(root_directory, '.html', Language.HTML) txt_docs = process_files(root_directory, '.txt') md_docs = process_files(root_directory, '.md') js_docs = process_files(root_directory, '.js', Language.JS) all_docs = ts_docs + html_docs + txt_docs + md_docs + js_docs return all_docs def initialize_or_load_database(): model_name = 'text-embedding-3-large' embeddings = OpenAIEmbeddings( model=model_name, openai_api_key=os.environ.get('OPENAI_API_KEY') ) chroma_client = chromadb.PersistentClient(path="./web_app_vector_storage_metadata") collection_name = "all_files" if os.path.exists("collection_storage.txt"): with open("collection_storage.txt", "r") as f: collection_storage_name, collection_storage_id = f.read().splitlines() print("Loading existing vector database...") docsearch = Chroma( client=chroma_client, collection_name=collection_name, embedding_function=embeddings ) else: print("Creating new vector database...") root_directory = "web-app" all_documents = process_all_files(root_directory) print(f"Total number of chunks across all files: {len(all_documents)}") print("Total number of files: ", len(set([doc.metadata['source'] for doc in all_documents]))) docsearch = Chroma.from_documents( documents=all_documents, embedding=embeddings, collection_name=collection_name, client=chroma_client ) collection_storage_name = chroma_client.list_collections()[0].name collection_storage_id = chroma_client.list_collections()[0].id # print("name: ", collection_storage_name) # print("id: ", collection_storage_id) with open("collection_storage.txt", "w") as f: f.write(f"{collection_storage_name}\n{collection_storage_id}") return docsearch docsearch = initialize_or_load_database() llm = ChatOpenAI( openai_api_key=os.environ.get('OPENAI_API_KEY'), model_name='gpt-4o-mini', temperature=0.3 ) qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=docsearch.as_retriever(), return_source_documents=True ) def get_top_20_embeddings(query): docs_and_scores = docsearch.similarity_search_with_score(query, k=20) return docs_and_scores def get_top_5_embeddings(query): if "structure" in query.lower() or "codebase" in query.lower(): return docsearch.similarity_search_with_score(query, k=10) return docsearch.similarity_search_with_score(query, k=5) def answer_question(question): top_5_results = get_top_5_embeddings(question) context = "\n".join([doc.page_content for doc, _ in top_5_results]) # print("Context: ", context) query_data = ( "You are an expert in project structure and various file types including TypeScript, HTML, Markdown, and JS." "When answering questions, focus on the file organization, key components of the codebase, and the structure of the project." "For general queries,like hi,hello etc, provide a brief answer, but for questions about project structure, include module names, file paths, and folder organization." "If you're unsure of the answer, suggest referring to the Mifos Slack Channel." "\nContext:\n" + context + "\n" + question ) response = qa.invoke(query_data) # top_20_results = get_top_20_embeddings(question) # print("Top 20 matching embeddings:") # for i, (doc, score) in enumerate(top_20_results, 1): # print(f"{i}. Document: {doc.page_content[:100]}...") # print(f" Metadata: {doc.metadata}") # print(f" Similarity Score: {score}") # print() return response['result'] interface = gr.Interface( fn=answer_question, inputs=gr.Textbox(label="Ask a question about the files"), outputs=gr.Textbox(label="Answer"), title="Mifos Web-App Chatbot", description="Ask questions about TypeScript, HTML files in Mifos Web-App." ) if __name__ == "__main__": interface.launch()