Spaces:
Runtime error
Runtime error
Fix langchain dependency for HF Space
Browse files- .gitignore +1 -0
- README.md +1 -1
- app.py +201 -96
- requirements.txt +2 -1
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.env
|
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title: "
|
| 3 |
emoji: "🤖"
|
| 4 |
colorFrom: "purple"
|
| 5 |
colorTo: "blue"
|
|
|
|
| 1 |
---
|
| 2 |
+
title: "RAG Chatbot: ML/AI Assistant"
|
| 3 |
emoji: "🤖"
|
| 4 |
colorFrom: "purple"
|
| 5 |
colorTo: "blue"
|
app.py
CHANGED
|
@@ -1,10 +1,23 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import time
|
| 5 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
# Page configuration
|
| 8 |
st.set_page_config(
|
| 9 |
page_title="🤖 RAG Chatbot: ML/AI Assistant",
|
| 10 |
page_icon="🤖",
|
|
@@ -12,13 +25,8 @@ st.set_page_config(
|
|
| 12 |
initial_sidebar_state="expanded"
|
| 13 |
)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
st.session_state.messages = []
|
| 18 |
-
if 'rag_system' not in st.session_state:
|
| 19 |
-
st.session_state.rag_system = None
|
| 20 |
-
if 'initialized' not in st.session_state:
|
| 21 |
-
st.session_state.initialized = False
|
| 22 |
|
| 23 |
# Custom CSS for better styling
|
| 24 |
st.markdown("""
|
|
@@ -58,24 +66,88 @@ st.markdown("""
|
|
| 58 |
</style>
|
| 59 |
""", unsafe_allow_html=True)
|
| 60 |
|
| 61 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
def initialize_rag_system(api_key):
|
| 63 |
"""Initialize the RAG system with all components"""
|
| 64 |
try:
|
| 65 |
# Set API key
|
| 66 |
os.environ['GOOGLE_API_KEY'] = api_key
|
| 67 |
|
| 68 |
-
# Import required libraries with error handling
|
| 69 |
-
try:
|
| 70 |
-
from sentence_transformers import SentenceTransformer
|
| 71 |
-
import chromadb
|
| 72 |
-
from chromadb.config import Settings
|
| 73 |
-
import google.generativeai as genai
|
| 74 |
-
import re
|
| 75 |
-
except ImportError as e:
|
| 76 |
-
st.error(f"Import error: {e}")
|
| 77 |
-
return None
|
| 78 |
-
|
| 79 |
# Initialize embedding model
|
| 80 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 81 |
|
|
@@ -88,117 +160,148 @@ def initialize_rag_system(api_key):
|
|
| 88 |
collection_name = "ml_ai_knowledge"
|
| 89 |
try:
|
| 90 |
collection = chroma_client.get_collection(collection_name)
|
|
|
|
| 91 |
except:
|
| 92 |
collection = chroma_client.create_collection(
|
| 93 |
name=collection_name,
|
| 94 |
-
metadata={"description": "ML/AI knowledge base"}
|
| 95 |
)
|
|
|
|
| 96 |
|
| 97 |
# Check if collection already has data
|
| 98 |
existing_count = collection.count()
|
|
|
|
| 99 |
|
| 100 |
if existing_count == 0:
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
"Supervised learning uses labeled training data to learn a mapping from inputs to outputs. Common algorithms include linear regression, decision trees, and support vector machines.",
|
| 106 |
-
"Unsupervised learning finds hidden patterns in data without labeled examples. Clustering algorithms like K-means group similar data points together.",
|
| 107 |
-
"Natural language processing combines computational linguistics with machine learning to help computers understand human language. It includes tasks like text classification and sentiment analysis.",
|
| 108 |
-
"Computer vision enables machines to interpret and understand visual information from the world. It uses deep learning models like convolutional neural networks.",
|
| 109 |
-
"Reinforcement learning is a type of machine learning where agents learn to make decisions by interacting with an environment and receiving rewards or penalties.",
|
| 110 |
-
"Feature engineering is the process of selecting and transforming raw data into features that can be used by machine learning algorithms. Good features can significantly improve model performance.",
|
| 111 |
-
"Cross-validation is a technique used to assess how well a machine learning model generalizes to new data. It involves splitting data into training and validation sets multiple times.",
|
| 112 |
-
"Overfitting occurs when a model learns the training data too well and performs poorly on new data. Regularization techniques help prevent overfitting.",
|
| 113 |
-
"Gradient descent is an optimization algorithm used to minimize the cost function in machine learning models. It iteratively adjusts parameters to find the minimum of the function.",
|
| 114 |
-
"Backpropagation is a method used to train neural networks by calculating gradients and updating weights. It works by propagating errors backward through the network layers.",
|
| 115 |
-
"Convolutional Neural Networks (CNNs) are specialized neural networks designed for processing grid-like data such as images. They use convolutional layers to detect local features.",
|
| 116 |
-
"Transformers are a type of neural network architecture that uses attention mechanisms to process sequential data. They are the foundation of modern language models like GPT.",
|
| 117 |
-
"Large Language Models (LLMs) are AI systems trained on vast amounts of text data to understand and generate human-like text. They can perform various language tasks.",
|
| 118 |
-
"Generative AI refers to AI systems that can create new content, such as text, images, or code. It differs from predictive AI which focuses on making predictions.",
|
| 119 |
-
"Transfer learning is a technique where a model trained on one task is adapted for a different but related task. It can significantly reduce training time and improve performance.",
|
| 120 |
-
"Hyperparameter tuning is the process of finding the optimal hyperparameters for a machine learning model. Common methods include grid search and random search.",
|
| 121 |
-
"Regularization techniques like L1 and L2 regularization help prevent overfitting by adding penalty terms to the loss function. They encourage simpler models.",
|
| 122 |
-
"Activation functions introduce non-linearity into neural networks. Common activation functions include ReLU, sigmoid, and tanh."
|
| 123 |
-
]
|
| 124 |
|
| 125 |
-
# Add sample documents to Chroma
|
| 126 |
all_chunks = []
|
| 127 |
chunk_ids = []
|
| 128 |
chunk_metadatas = []
|
| 129 |
|
| 130 |
-
for i, text in enumerate(
|
| 131 |
-
|
| 132 |
-
metadata = {
|
| 133 |
-
"source": f"sample_doc_{i}",
|
| 134 |
-
"chunk_index": 0,
|
| 135 |
-
"total_chunks": 1,
|
| 136 |
-
"text_length": len(text)
|
| 137 |
-
}
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
-
# Initialize Gemini
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
return {
|
| 154 |
'embedding_model': embedding_model,
|
| 155 |
'chroma_client': chroma_client,
|
| 156 |
'collection': collection,
|
| 157 |
-
'
|
| 158 |
}
|
| 159 |
except Exception as e:
|
| 160 |
st.error(f"Error initializing RAG system: {e}")
|
| 161 |
return None
|
| 162 |
|
| 163 |
-
def
|
| 164 |
-
"""
|
| 165 |
try:
|
| 166 |
-
collection = rag_system['collection']
|
| 167 |
-
genai = rag_system['genai']
|
| 168 |
-
|
| 169 |
-
# Retrieve relevant documents
|
| 170 |
results = collection.query(
|
| 171 |
query_texts=[query],
|
| 172 |
n_results=n_results
|
| 173 |
)
|
| 174 |
|
|
|
|
| 175 |
documents = results['documents'][0]
|
|
|
|
| 176 |
distances = results['distances'][0]
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
| 195 |
|
| 196 |
-
|
|
|
|
| 197 |
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
|
|
|
| 202 |
|
| 203 |
except Exception as e:
|
| 204 |
return f"Error generating response: {e}", [], []
|
|
@@ -207,7 +310,7 @@ def rag_pipeline(query, rag_system, n_results=5):
|
|
| 207 |
st.markdown("""
|
| 208 |
<div class="main-header">
|
| 209 |
<h1>🤖 RAG Chatbot: ML/AI Assistant</h1>
|
| 210 |
-
<p>Powered by Google Gemini 2.5 Flash +
|
| 211 |
</div>
|
| 212 |
""", unsafe_allow_html=True)
|
| 213 |
|
|
@@ -221,7 +324,8 @@ with st.sidebar:
|
|
| 221 |
type="password",
|
| 222 |
help="Get your API key from Google AI Studio"
|
| 223 |
)
|
| 224 |
-
|
|
|
|
| 225 |
if api_key:
|
| 226 |
os.environ['GOOGLE_API_KEY'] = api_key
|
| 227 |
|
|
@@ -281,13 +385,14 @@ if not st.session_state.initialized:
|
|
| 281 |
deep learning, AI, and related topics using:
|
| 282 |
|
| 283 |
- **🤖 Generation Model**: Google Gemini 2.5 Flash
|
|
|
|
| 284 |
- **🗄️ Vector Database**: Chroma
|
| 285 |
-
- **📚 Dataset**:
|
| 286 |
- **🌐 Interface**: Streamlit
|
| 287 |
|
| 288 |
### 🚀 How It Works
|
| 289 |
|
| 290 |
-
1. **Data Loading**:
|
| 291 |
2. **Embedding**: Text is processed and embedded using sentence transformers
|
| 292 |
3. **Storage**: Embeddings are stored in Chroma vector database
|
| 293 |
4. **Retrieval**: Relevant context is retrieved for user queries
|
|
@@ -360,7 +465,7 @@ else:
|
|
| 360 |
st.markdown("---")
|
| 361 |
st.markdown("""
|
| 362 |
<div style="text-align: center; color: #666; padding: 1rem;">
|
| 363 |
-
<p>🤖 RAG Chatbot | Powered by Google Gemini 2.5 Flash + Chroma</p>
|
| 364 |
-
<p>📚 Knowledge Base:
|
| 365 |
</div>
|
| 366 |
""", unsafe_allow_html=True)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
+
import chromadb
|
| 5 |
+
from chromadb.config import Settings
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 8 |
+
from langchain.schema import HumanMessage, SystemMessage
|
| 9 |
import time
|
| 10 |
from datetime import datetime
|
| 11 |
+
import uuid
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import numpy as np
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
+
from tqdm import tqdm
|
| 16 |
+
import re
|
| 17 |
+
from dotenv import load_dotenv
|
| 18 |
+
import os
|
| 19 |
+
|
| 20 |
|
|
|
|
| 21 |
st.set_page_config(
|
| 22 |
page_title="🤖 RAG Chatbot: ML/AI Assistant",
|
| 23 |
page_icon="🤖",
|
|
|
|
| 25 |
initial_sidebar_state="expanded"
|
| 26 |
)
|
| 27 |
|
| 28 |
+
load_dotenv()
|
| 29 |
+
api_key = os.environ.get("GOOGLE_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
# Custom CSS for better styling
|
| 32 |
st.markdown("""
|
|
|
|
| 66 |
</style>
|
| 67 |
""", unsafe_allow_html=True)
|
| 68 |
|
| 69 |
+
# Initialize session state
|
| 70 |
+
if 'messages' not in st.session_state:
|
| 71 |
+
st.session_state.messages = []
|
| 72 |
+
if 'rag_system' not in st.session_state:
|
| 73 |
+
st.session_state.rag_system = None
|
| 74 |
+
if 'initialized' not in st.session_state:
|
| 75 |
+
st.session_state.initialized = False
|
| 76 |
+
|
| 77 |
+
# RAG System Functions (from notebook)
|
| 78 |
+
def chunk_text(text, chunk_size=500, overlap=50):
|
| 79 |
+
"""Split text into overlapping chunks"""
|
| 80 |
+
words = text.split()
|
| 81 |
+
chunks = []
|
| 82 |
+
|
| 83 |
+
for i in range(0, len(words), chunk_size - overlap):
|
| 84 |
+
chunk = ' '.join(words[i:i + chunk_size])
|
| 85 |
+
if len(chunk.strip()) > 50: # Only keep substantial chunks
|
| 86 |
+
chunks.append(chunk)
|
| 87 |
+
|
| 88 |
+
return chunks
|
| 89 |
+
|
| 90 |
+
def load_and_process_dataset():
|
| 91 |
+
"""Load and process The Pile dataset"""
|
| 92 |
+
print("📚 Loading The Pile dataset...")
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
# Load a specific subset that contains ML/AI content
|
| 96 |
+
dataset = load_dataset("EleutherAI/the_pile", split="train", streaming=True)
|
| 97 |
+
|
| 98 |
+
# Take first 1000 samples for demonstration
|
| 99 |
+
texts = []
|
| 100 |
+
ml_keywords = ['machine learning', 'deep learning', 'neural network', 'artificial intelligence',
|
| 101 |
+
'algorithm', 'model', 'training', 'data', 'feature', 'classification',
|
| 102 |
+
'regression', 'clustering', 'optimization', 'gradient', 'tensor']
|
| 103 |
+
|
| 104 |
+
print("🔍 Filtering ML/AI related content...")
|
| 105 |
+
count = 0
|
| 106 |
+
for sample in tqdm(dataset, desc="Processing samples"):
|
| 107 |
+
if count >= 1000: # Limit to 1000 samples for demo
|
| 108 |
+
break
|
| 109 |
+
|
| 110 |
+
text = sample['text']
|
| 111 |
+
# Check if text contains ML/AI keywords
|
| 112 |
+
if any(keyword in text.lower() for keyword in ml_keywords):
|
| 113 |
+
# Clean and preprocess text
|
| 114 |
+
text = re.sub(r'\s+', ' ', text) # Remove extra whitespace
|
| 115 |
+
text = text.strip()
|
| 116 |
+
|
| 117 |
+
# Only keep texts that are reasonable length (not too short or too long)
|
| 118 |
+
if 100 <= len(text) <= 2000:
|
| 119 |
+
texts.append(text)
|
| 120 |
+
count += 1
|
| 121 |
+
|
| 122 |
+
print(f"✅ Loaded {len(texts)} ML/AI related text samples")
|
| 123 |
+
return texts
|
| 124 |
+
|
| 125 |
+
except Exception as e:
|
| 126 |
+
print(f"❌ Error loading dataset: {e}")
|
| 127 |
+
print("🔄 Using fallback sample data...")
|
| 128 |
+
|
| 129 |
+
# Fallback sample data if The Pile is not accessible
|
| 130 |
+
texts = [
|
| 131 |
+
"Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data. Deep learning uses neural networks with multiple layers to process complex patterns in data.",
|
| 132 |
+
"Neural networks are computing systems inspired by biological neural networks. They consist of interconnected nodes that process information using a connectionist approach.",
|
| 133 |
+
"Supervised learning uses labeled training data to learn a mapping from inputs to outputs. Common algorithms include linear regression, decision trees, and support vector machines.",
|
| 134 |
+
"Unsupervised learning finds hidden patterns in data without labeled examples. Clustering algorithms like K-means group similar data points together.",
|
| 135 |
+
"Natural language processing combines computational linguistics with machine learning to help computers understand human language. It includes tasks like text classification and sentiment analysis.",
|
| 136 |
+
"Computer vision enables machines to interpret and understand visual information from the world. It uses deep learning models like convolutional neural networks.",
|
| 137 |
+
"Reinforcement learning is a type of machine learning where agents learn to make decisions by interacting with an environment and receiving rewards or penalties.",
|
| 138 |
+
"Feature engineering is the process of selecting and transforming raw data into features that can be used by machine learning algorithms. Good features can significantly improve model performance.",
|
| 139 |
+
"Cross-validation is a technique used to assess how well a machine learning model generalizes to new data. It involves splitting data into training and validation sets multiple times.",
|
| 140 |
+
"Overfitting occurs when a model learns the training data too well and performs poorly on new data. Regularization techniques help prevent overfitting."
|
| 141 |
+
]
|
| 142 |
+
print(f"✅ Using {len(texts)} sample texts")
|
| 143 |
+
return texts
|
| 144 |
+
|
| 145 |
def initialize_rag_system(api_key):
|
| 146 |
"""Initialize the RAG system with all components"""
|
| 147 |
try:
|
| 148 |
# Set API key
|
| 149 |
os.environ['GOOGLE_API_KEY'] = api_key
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
# Initialize embedding model
|
| 152 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 153 |
|
|
|
|
| 160 |
collection_name = "ml_ai_knowledge"
|
| 161 |
try:
|
| 162 |
collection = chroma_client.get_collection(collection_name)
|
| 163 |
+
print(f"✅ Found existing collection: {collection_name}")
|
| 164 |
except:
|
| 165 |
collection = chroma_client.create_collection(
|
| 166 |
name=collection_name,
|
| 167 |
+
metadata={"description": "ML/AI knowledge base from The Pile dataset"}
|
| 168 |
)
|
| 169 |
+
print(f"✅ Created new collection: {collection_name}")
|
| 170 |
|
| 171 |
# Check if collection already has data
|
| 172 |
existing_count = collection.count()
|
| 173 |
+
print(f"📊 Current documents in collection: {existing_count}")
|
| 174 |
|
| 175 |
if existing_count == 0:
|
| 176 |
+
print("🔄 Adding new documents to collection...")
|
| 177 |
+
|
| 178 |
+
# Load and process dataset
|
| 179 |
+
texts = load_and_process_dataset()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
|
|
|
| 181 |
all_chunks = []
|
| 182 |
chunk_ids = []
|
| 183 |
chunk_metadatas = []
|
| 184 |
|
| 185 |
+
for i, text in enumerate(tqdm(texts, desc="Processing texts")):
|
| 186 |
+
chunks = chunk_text(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
for j, chunk in enumerate(chunks):
|
| 189 |
+
chunk_id = f"doc_{i}_chunk_{j}"
|
| 190 |
+
metadata = {
|
| 191 |
+
"source": f"the_pile_doc_{i}",
|
| 192 |
+
"chunk_index": j,
|
| 193 |
+
"total_chunks": len(chunks),
|
| 194 |
+
"text_length": len(chunk)
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
all_chunks.append(chunk)
|
| 198 |
+
chunk_ids.append(chunk_id)
|
| 199 |
+
chunk_metadatas.append(metadata)
|
| 200 |
|
| 201 |
+
print(f"📊 Created {len(all_chunks)} text chunks")
|
| 202 |
+
|
| 203 |
+
# Add documents to Chroma in batches to avoid memory issues
|
| 204 |
+
batch_size = 100
|
| 205 |
+
for i in tqdm(range(0, len(all_chunks), batch_size), desc="Adding to Chroma"):
|
| 206 |
+
batch_chunks = all_chunks[i:i + batch_size]
|
| 207 |
+
batch_ids = chunk_ids[i:i + batch_size]
|
| 208 |
+
batch_metadatas = chunk_metadatas[i:i + batch_size]
|
| 209 |
+
|
| 210 |
+
collection.add(
|
| 211 |
+
documents=batch_chunks,
|
| 212 |
+
ids=batch_ids,
|
| 213 |
+
metadatas=batch_metadatas
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
print("✅ All documents added to Chroma!")
|
| 217 |
+
else:
|
| 218 |
+
print("✅ Collection already contains data, skipping addition")
|
| 219 |
|
| 220 |
+
# Initialize Gemini
|
| 221 |
+
llm = ChatGoogleGenerativeAI(
|
| 222 |
+
model="gemini-2.0-flash-exp",
|
| 223 |
+
temperature=0.7,
|
| 224 |
+
max_output_tokens=1024,
|
| 225 |
+
convert_system_message_to_human=True
|
| 226 |
+
)
|
| 227 |
|
| 228 |
return {
|
| 229 |
'embedding_model': embedding_model,
|
| 230 |
'chroma_client': chroma_client,
|
| 231 |
'collection': collection,
|
| 232 |
+
'llm': llm
|
| 233 |
}
|
| 234 |
except Exception as e:
|
| 235 |
st.error(f"Error initializing RAG system: {e}")
|
| 236 |
return None
|
| 237 |
|
| 238 |
+
def retrieve_relevant_docs(query, collection, n_results=5):
|
| 239 |
+
"""Retrieve relevant documents from Chroma"""
|
| 240 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
results = collection.query(
|
| 242 |
query_texts=[query],
|
| 243 |
n_results=n_results
|
| 244 |
)
|
| 245 |
|
| 246 |
+
# Extract documents and metadata
|
| 247 |
documents = results['documents'][0]
|
| 248 |
+
metadatas = results['metadatas'][0]
|
| 249 |
distances = results['distances'][0]
|
| 250 |
|
| 251 |
+
return documents, metadatas, distances
|
| 252 |
+
except Exception as e:
|
| 253 |
+
print(f"Error retrieving documents: {e}")
|
| 254 |
+
return [], [], []
|
| 255 |
+
|
| 256 |
+
def create_context(documents):
|
| 257 |
+
"""Create context string from retrieved documents"""
|
| 258 |
+
context = "\n\n".join(documents)
|
| 259 |
+
return context
|
| 260 |
+
|
| 261 |
+
def generate_answer(query, context, llm):
|
| 262 |
+
"""Generate answer using Gemini with retrieved context"""
|
| 263 |
+
system_prompt = """You are an AI assistant specialized in machine learning, deep learning, and artificial intelligence.
|
| 264 |
+
Use the provided context to answer questions accurately and comprehensively. If the context doesn't contain enough
|
| 265 |
+
information, you can supplement with your general knowledge, but always prioritize the provided context.
|
| 266 |
+
|
| 267 |
+
Provide clear, well-structured answers with examples when appropriate."""
|
| 268 |
+
|
| 269 |
+
user_prompt = f"""Context:
|
| 270 |
+
{context}
|
| 271 |
+
|
| 272 |
+
Question: {query}
|
| 273 |
+
|
| 274 |
+
Please provide a comprehensive answer based on the context above."""
|
| 275 |
+
|
| 276 |
+
try:
|
| 277 |
+
messages = [
|
| 278 |
+
SystemMessage(content=system_prompt),
|
| 279 |
+
HumanMessage(content=user_prompt)
|
| 280 |
+
]
|
| 281 |
|
| 282 |
+
response = llm.invoke(messages)
|
| 283 |
+
return response.content
|
| 284 |
+
except Exception as e:
|
| 285 |
+
return f"Error generating answer: {e}"
|
| 286 |
+
|
| 287 |
+
def rag_pipeline(query, rag_system, n_results=5):
|
| 288 |
+
"""Complete RAG pipeline"""
|
| 289 |
+
try:
|
| 290 |
+
collection = rag_system['collection']
|
| 291 |
+
llm = rag_system['llm']
|
| 292 |
|
| 293 |
+
# Retrieve relevant documents
|
| 294 |
+
documents, metadatas, distances = retrieve_relevant_docs(query, collection, n_results)
|
| 295 |
|
| 296 |
+
if not documents:
|
| 297 |
+
return "I couldn't find relevant information for your query. Please try asking about machine learning, deep learning, or AI topics."
|
| 298 |
|
| 299 |
+
# Create context
|
| 300 |
+
context = create_context(documents)
|
| 301 |
|
| 302 |
+
# Generate answer
|
| 303 |
+
answer = generate_answer(query, context, llm)
|
| 304 |
+
return answer, documents, distances
|
| 305 |
|
| 306 |
except Exception as e:
|
| 307 |
return f"Error generating response: {e}", [], []
|
|
|
|
| 310 |
st.markdown("""
|
| 311 |
<div class="main-header">
|
| 312 |
<h1>🤖 RAG Chatbot: ML/AI Assistant</h1>
|
| 313 |
+
<p>Powered by Google Gemini 2.5 Flash + LangChain + Chroma</p>
|
| 314 |
</div>
|
| 315 |
""", unsafe_allow_html=True)
|
| 316 |
|
|
|
|
| 324 |
type="password",
|
| 325 |
help="Get your API key from Google AI Studio"
|
| 326 |
)
|
| 327 |
+
|
| 328 |
+
|
| 329 |
if api_key:
|
| 330 |
os.environ['GOOGLE_API_KEY'] = api_key
|
| 331 |
|
|
|
|
| 385 |
deep learning, AI, and related topics using:
|
| 386 |
|
| 387 |
- **🤖 Generation Model**: Google Gemini 2.5 Flash
|
| 388 |
+
- **🔗 RAG Framework**: LangChain
|
| 389 |
- **🗄️ Vector Database**: Chroma
|
| 390 |
+
- **📚 Dataset**: The Pile (EleutherAI/the_pile) from Hugging Face
|
| 391 |
- **🌐 Interface**: Streamlit
|
| 392 |
|
| 393 |
### 🚀 How It Works
|
| 394 |
|
| 395 |
+
1. **Data Loading**: Text data from The Pile dataset is loaded and filtered for ML/AI content
|
| 396 |
2. **Embedding**: Text is processed and embedded using sentence transformers
|
| 397 |
3. **Storage**: Embeddings are stored in Chroma vector database
|
| 398 |
4. **Retrieval**: Relevant context is retrieved for user queries
|
|
|
|
| 465 |
st.markdown("---")
|
| 466 |
st.markdown("""
|
| 467 |
<div style="text-align: center; color: #666; padding: 1rem;">
|
| 468 |
+
<p>🤖 RAG Chatbot | Powered by Google Gemini 2.5 Flash + LangChain + Chroma</p>
|
| 469 |
+
<p>📚 Knowledge Base: The Pile Dataset (EleutherAI/the_pile)</p>
|
| 470 |
</div>
|
| 471 |
""", unsafe_allow_html=True)
|
requirements.txt
CHANGED
|
@@ -6,4 +6,5 @@ google-generativeai==0.3.2
|
|
| 6 |
numpy==1.24.3
|
| 7 |
pandas==2.0.3
|
| 8 |
tqdm==4.66.1
|
| 9 |
-
huggingface-hub>=0.16.4,<1.0.0
|
|
|
|
|
|
| 6 |
numpy==1.24.3
|
| 7 |
pandas==2.0.3
|
| 8 |
tqdm==4.66.1
|
| 9 |
+
huggingface-hub>=0.16.4,<1.0.0
|
| 10 |
+
gradio
|